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ABSTRACT
In the last few years, a renewed interest of the research community
in conversational recommender systems (CRSs) has been emerging.
This is likely due to the massive proliferation of Digital Assistants
(DAs) such as Amazon Alexa, Siri, or Google Assistant that are
revolutionizing the way users interact with machines. DAs allow
users to execute a wide range of actions through an interaction
mostly based on natural language utterances. However, although
DAs are able to complete tasks such as sending texts, making phone
calls, or playing songs, they still remain at an early stage in terms
of their recommendation capabilities via a conversation. In addi-
tion, we have been witnessing the advent of increasingly precise
and powerful recommendation algorithms and techniques able to
effectively assess users’ tastes and predict information that may be
of interest to them. Most of these approaches rely on the collab-
orative paradigm (often exploiting machine learning techniques)
and neglect the huge amount of knowledge, both structured and
unstructured, describing the domain of interest of a recommenda-
tion engine. Although very effective in predicting relevant items,
collaborative approaches miss some very interesting features that
go beyond the accuracy of results and move in the direction of
providing novel and diverse results as well as generating explana-
tions for recommended items. Knowledge-aware side information
becomes crucial when a conversational interaction is implemented,
in particular for preference elicitation, explanation, and critiquing
steps.
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1 WORKSHOP DESCRIPTION
Recommender systems are becoming part of our daily life in many
and diverse situations. Nevertheless, they start showing their lim-
its in the tight interaction with human users [25]. During the last
years, owing in part to the new wave of deep learning approaches, a
plethora of data-driven algorithms have been proposed that seek to
identify latent connections among users and items [4, 20]. Despite
their excellent results in terms of accuracy in recommending new
items, such approaches very often miss a fundamental actor in the
loop: the end-user. For this reason, current research is focusing on
new challenges such as privacy [3], emotion awareness [30], and
new paradigms such as federated learning [6, 7]. The exploitation
of the knowledge about the domain of interest of a catalog via
automated reasoning as well as critiquing approaches are very com-
mon in the normal behavior of a human user, but they are not well
codified in recommendation engine behaviors. Knowledge-based
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approaches began to appear two decades ago [10, 11, 14, 19, 37].
Nonetheless, they became more widely used with the advent of the
Linking Open Data1 initiative when a huge number of knowledge-
graphs started being released and were made freely available. These
include encyclopedic datasets such as DBpedia2 and Wikidata3,
where semantics-aware information is available on different knowl-
edge domains and applications [5]. The exploitation of such datasets
together with their ontologies is at the basis of many approaches to
recommendation and challenges proposed in the last years such as
Knowledge Graph embeddings [16, 26–28, 40], hybrid recommen-
dation [11, 13], link prediction [15, 16, 21, 29, 32, 33, 35], knowledge
transfer [20], interpretable recommendation [11, 12, 36], and user
modeling [8, 17, 18, 34]. Successful workshops and international
conferences in the last few years (ISWC, ACM Recommender Sys-
tems, UMAP, AAAI, ECAI, IJCAI, SIGIR) show the growing interest
and research potential of these systems.

Furthermore, this side information associated with items be-
comes crucial when the interaction requires content features. This
is the case of Conversational Recommender Systems (CRSs) [41].
CRSs are characterized by a multi-turn dialogue between the user
and the system [24] and are exploited in several domains [31]. Note
that “conversational” as defined here, is not restricted to CRSs that
conduct dialogues in natural language. A CRS might converse in
natural language, but it may allow more constrained modes of user
interaction as well [23]. This kind of interaction introduces new
challenges, since it blurs the difference between recommendation
and retrieval. A CRS ought to be able to exploit both short- and
long-term preferences, for example. Furthermore, a CRS should be
able to adapt its behaviour in a timely manner when user feedback
is provided. These are just some peculiarities of this kind of interac-
tion. As we can imagine, another sensitive issue is the evaluation of
CRSs [39], since also in this case we need to go beyond simple ac-
curacy metrics. The limited availability of datasets is an additional
obstacle to the evaluation of these systems [22]. While research
and development into CRSs has never gone away, it has certainly
been less prominent for a while. Only recently has the literature
on this topic been growing again quite notably [24].

1.1 Objectives
The Fourth Knowledge-aware and Conversational Recommender Sys-
tems (KaRS) Workshop focuses on all aspects related to the ex-
ploitation of external and explicit knowledge sources to feed and
build a recommendation engine, and on the adoption of interactions
based on the conversational paradigm. The aim is to go beyond
the traditional accuracy goal [25] and to start a new generation
of algorithms and approaches with the help of the methodologi-
cal diversity embodied in fields such as Machine Learning (ML),
Human–Computer Interaction (HCI), Information Retrieval (IR),
and Information Systems (IS). Hence, the focus lies on research
improving the user experience and following goals such as user
engagement and satisfaction or customer value as has also been
advocated by Zanker et al. [38]. The aim of this fourth edition
of KaRS [1, 9] is to bring together researchers and practitioners

1http://linkeddata.org
2https://dbpedia.org
3https://wikidata.org

around the topics of designing and evaluating novel approaches for
recommender systems in order to (i) share research and techniques,
including new design technologies, (ii) identify next key challenges
in the area, (iii) identify emerging topics in the field. The workshop
aims to establish an interdisciplinary community with a focus on
the exploitation of (semi-)structured knowledge and conversational
approaches for recommender systems and promoting collaboration
opportunities.

1.2 Topics
Topics of interest include, but are not limited to:
• Models and Feature Engineering: Data models based on struc-
tured knowledge sources (e.g., Linked Open Data, Wikidata, Ba-
belNet, etc.), Semantics-aware approaches exploiting the analysis
of textual sources (e.g., Wikipedia, Social Web, etc.), Knowledge-
aware user modeling, Methodological aspects (evaluation pro-
tocols, metrics, and datasets), Logic-based modeling of a recom-
mendation process, Knowledge Representation and Automated
Reasoning for recommendation engines, Deep learning methods
to model semantic features

• Beyond-Accuracy Recommendation Quality: Using knowl-
edge bases and knowledge graphs to increase recommendation
quality (e.g., in terms of novelty, diversity, serendipity, or explain-
ability), Explainable Recommender Systems, Knowledge-aware
explanations (compliant with the General Data Protection Regu-
lation)

• Online Studies: Knowledge sources for cross-lingual recom-
mendations, Applications of knowledge-aware recommenders
(e.g., music or news recommendation, off-mainstream application
areas), User studies (e.g., on the user’s perception of knowledge-
based recommendations), field studies

• Design of a Conversational Agent: Design and implementa-
tionmethodologies, Dialoguemanagement (end-to-end, dialogue-
state-tracker models), UX design, Dialogue protocol design

• User Modeling and Interfaces: Critiquing and user’s feedback
exploitation, Short- and Long-term user profiling and modeling,
Preference elicitation, Natural language, multimodal, and voice-
based interfaces, Next-question problem

• Methodological andTheoretical aspects: Evaluation andmet-
rics, Datasets, Theoretical aspects of conversational recommender
systems

2 RELATEDWORKSHOPS
In this section, we briefly review the recent workshops (WSs) related
to Knoweldge-aware and Conversational Systems.
• 1st, 2nd, and 3rd International Workshop on Knowledge-
aware and Conversational Recommender Systems4. These
are the previous editions of the WS [1, 2, 9].

• 3rd InternationalWorkshoponEntitYRetrieval and lEarn-
ing (EYRE 2020 @ CIKM)5 This WS is focused on Entity Re-
trieval, which is substantially different from Recommender Sys-
tem. They are slightly related because also in EYRE structured
data are exploited for Information Retrieval tasks.

4https://kars-workshop.github.io/2018/, https://kars-workshop.github.io/2019/, https:
//kars-workshop.github.io/2021/
5https://sites.google.com/view/eyre20/home
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• 3rd International Workshop on ExplainAble Recommen-
dation and Search (EARS 2020 @ SIGIR)6 This WS is based
on explainable recommendations. However, the focus is different
because we promote the adoption of structured knowledge, and
we cover also different topics as Conversational agents.

• JointWorkshoponBibliometric-enhanced InformationRe-
trieval andNatural LanguageProcessing forDigital Libraries
(BIRDNL 2019)7 The focus of this WS is on Digital Libraries.
Structured knowledge and Information Retrieval are promoted,
but the audience is not from Recommender Systems or Conver-
sational Agents fields.

• 1stWorkshoponConversational Interaction Systems (WCIS
2019)8 This WS is only focused on Conversational Agents. In
details, they focus more on speech recognition, spoken language
understanding, language generation, and multi-modal question
answering communities.

• 2nd InternationalWorkshop onDeep Learning onGraphs:
Methods and Applications (DLG 2020 @ KDD)9 The WS is
related since they promote the adoption of deep learning tech-
niques on graphs. However, Recommender systems, Conversa-
tional Agents and representations different from graphs are not
considered.

• DeepLearning forKnowledgeGraphs (DL4KG2020@ESWC)10

This WS is related because they promote the adoption of deep
learning techniques on graphs. However, Recommender systems
and knowledge representations different from graphs are not
considered.

• 6th SemanticDeep Learning (SemDeep-6@ IJCAI-PRICAI
2020)11 The WS promote the adoption of Deep Learning tech-
niques together with semantics. The focus of the WS is basically
on (semi-automated) ontology learning, ontology alignment, on-
tology annotation, duplicate recognition, ontology prediction,
knowledge base completion, relation extraction, and semantically
grounded inference, which are topics that are very different from
ours.

• ExplainableUserModels andPersonalized Systems (ExUM
2020 @ UMAP)12 The WS focuses on Transparent Personal-
ization Methods based on Heterogeneous and Personal Data.
They cover the explainability of user modeling. However, Recom-
mender Systems, Conversational Agents and structured knowl-
edge representation are not considered.

3 PROGRAM COMMITTEE
The members of the Program Committee of KaRS 2022 are: Aris
Anagnostopoulos (Sapienza University of Rome), Vito Walter
Anelli (Politecnico di Bari), Marco Angelini (Sapienza Univer-
sity of Rome), Pierpaolo Basile (Dipartimento di Informatica -
University of Bari), Roberto Basili (Dept. of Enterprise Engineer-
ing - Univ. of Roma Tor Vergata), Alejandro Bellogin (Univer-
sidad Autonoma de Madrid), Ludovico Boratto (University of

6https://ears2020.github.io/
7http://www.sigir.org/sigir2019/program/workshops/birdnl/
8https://sites.google.com/view/wcis/home
9https://deep-learning-graphs.bitbucket.io/dlg-kdd20/
10https://alammehwish.github.io/dl4kg_eswc_2020/
11https://www.dfki.de/~declerck/semdeep-6/
12https://um.org/umap2020/attending/workshops-and-tutorials/

Cagliari), Eric Charton (Banque Nationale du Canada), Gian-
domenico Cornacchia (Politecnico di Bari), Fabio Crestani (Uni-
versità della Svizzera Italiana) (USI), Danilo Croce (Dept. of Enter-
prise Engineering - Univ. of Roma Tor Vergata), Marco de Gem-
mis (University of Bari Aldo Moro, Dept. of Computer Science),
Tommaso Di Noia (Politecnico di Bari), Davide Di Ruscio (Uni-
versità degli Studi dell’Aquila), Fabrizio Falchi (ISTI-CNR), An-
tonio Ferrara (Politecnico di Bari), Maurizio Ferrari Dacrema
(Politecnico di Milano), Andrea Iovine (Università degli Studi di
Bari Aldo Moro), Dietmar Jannach (University of Klagenfurt),
Daniele Malitesta (Polytechnic University of Bari), Rubén Fran-
cisco Manrique (Universidad de los Andes), Olga Marino (Uni-
versidad de los Andes),DavidMassimo (Free University of Bolzano),
Franco Maria Nardini (ISTI-CNR), Fedelucio Narducci (Politec-
nico di Bari), Raffaele Perego (ISTI-CNR), Marco Polignano
(Università degli Studi di Bari Aldo Moro), Claudio Pomo (Politec-
nico di Bari), Yongli Ren (RMIT University), Gaetano Rossiello
(IBM Research AI), Pablo Sánchez (Universidad Autónoma de
Madrid),Giovanni Semeraro (University of Bari),Damiano Spina
(RMIT University), Alain Starke (Wageningen University & Re-
search)
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