Knowlywood: Mining Activity Knowledge from Hollywood Narratives

**Niket Tandon** (MPI Informatics, Saarbruecken) Gerard de Melo (IIIS, Tsinghua Univ)

Abir De (IIT Kharagpur)

Gerhard Weikum (MPI Informatics, Saarbruecken)



#### Legs, person, shoe, mountain, rope..



Legs, person, shoe, mountain, rope..

Rock climbing Going up a mountain/ hill Going up an elevation

Daytime, outdoor activity What happens next?



Legs, person, shoe, mountain, rope..

Rock climbing Going up a mountain/ hill Going up an elevation

Daytime, outdoor activity What happens next? Activity classes Activity groupings Activity hierarchy

Additional information Temporal guidance



### Activity commonsense: Related work

| ent mining                                                                                                                                                      |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| cyclopedic KBs:<br>actual e.g. bornOn<br>ntity oriented e.g. Person<br>1any KBs: e.g. Freebase                                                                  |   |
| Alexander J. Honnold         File         File         Alexander J. Honnold         Her Honnold at the Trento Film Festival (2014)         Personal information |   |
| Born         August 17, 1985 (age 29)           Education         UC Berkeley (dropped out)                                                                     |   |
| Occupation Professional rock climber Climbing career                                                                                                            |   |
| Type of • Free solo<br>climber • Bio wall                                                                                                                       |   |
| Highest grade Redpoint 5.14c (8c+)                                                                                                                              |   |
| Known for<br>Big Wall Free Soloing<br>Speed record on <i>The Nose</i> of<br>El Capitan                                                                          | 6 |

### Activity commonsense: Related work

| Event mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commonsense KB                                                             |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|
| Encyclopedic KBs:<br>Factual e.g. bornOn<br>Entity oriented e.g. Person<br>Many KBs: e.g. Freebase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cyc:<br>Manual<br>Limited size<br>No focus on activities                   |   |
| Alexander J. Honnold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ConceptNet:<br>Crowdsourced<br>Limited size<br>No semantic activity frames |   |
| Personal informationBornAugust 17, 1985 (age 29)EducationUC Berkeley (dropped out)OccupationProfessional rock climberType of<br>climberFree soloClimberBig wallHighest grade<br>Bouldering: V12 (8A+)Known for<br>Ber elever on <i>The Nose</i> of<br>Elever on <i>The Nose</i> of<br>Elever on <i>The Nose</i> of<br>Elever on the solo on the Nose of<br>Elever on the Nose of<br> | WebChild:<br>No focus on activities                                        | 7 |

### Activity commonsense: Related work

| Event mining                                                                        | Commonsense KB                                                                                                                                                                | This talk                         |  |  |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| <section-header></section-header>                                                   | Cyc:<br>Manual<br>Limited size<br>No focus on activities<br>ConceptNet:<br>Crowdsourced<br>Limited size<br>No semantic activity frames<br>WebChild:<br>No focus on activities | <section-header></section-header> |  |  |  |  |
| Known for Big Wall Free Soloing<br>Speed record on <i>The Nose</i> of<br>El Capitan |                                                                                                                                                                               | 8                                 |  |  |  |  |



Activity commonsense is **hard**:

- People hardly express the obvious : implicit and scarce
- Spread across multiple modalities : text, image, videos
- Non-factual : hence noisy



Contain events but not activity knowledge

May contain activities but varying granularity and no visuals. No clear scene boundaries.



Hollywood narratives are easily available and meet the desiderata

#### EXT. SMALL MOUNTAIN--DAY

Wichita charges up the rockage of a small mountain-hill-type thing. The image repeats itself over and over--each time Wichita is more sweaty, gasping, sneering.

Wichita (V.O.) The rules forbid anyone from the climbing the camp's mountain.













| IMS prior W                                                                              | VN prior                         | Word<br>match             | , VN<br>n score                                                                                               | Selectional restriction score                                                             |                                                                            |
|------------------------------------------------------------------------------------------|----------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| maximize $\sum_{i=i}^{j} x_{ij} (\alpha x)$                                              | $\tau_{ij} + \beta$              | $B_1 \theta_{ij} +$       | $\beta_2 \mathrm{syn}_i$                                                                                      | $\beta_j + \beta_3 \operatorname{sem}_{ij})$                                              | x <sub>ij</sub> = binary decision var. for<br>word i, mapped to WN sense j |
| subject to                                                                               |                                  |                           |                                                                                                               |                                                                                           | One VN sense per verb                                                      |
| $\sum_{\substack{j \in S_{\mathcal{V}} \\ x_{ij}}} x_{ij}$ $x_{i_0 j_0}$ $\sum_i x_{ij}$ | $\leq$ 1<br>$\leq$ 2<br>$\leq$ 1 | l<br>r <sub>ij</sub><br>l | $\forall i \in V$<br>$\forall i \in V$<br>$j mappind i_0 \in X_{ij} \in X_{ij} \in V$<br>$\forall i \notin V$ | $\forall j \in S_{W}, \ ped to \ j' \in S_{V} \ V, j \in S_{V}, \ role-restr(x_{i_0j_0})$ | WN, VN sense consistency<br>Selectional restr. constraints                 |
| $\stackrel{j}{x_{ij}}$                                                                   | $\in$                            | $\{0, 1\}$                |                                                                                                               |                                                                                           | binary decision                                                            |
|                                                                                          |                                  |                           |                                                                                                               |                                                                                           |                                                                            |



| Go up an | elevation | Climb up a   | mountain         | Hike up a    | hill      | Drink | water |
|----------|-----------|--------------|------------------|--------------|-----------|-------|-------|
|          |           | Participants | climber,<br>rope | Participants | climber   |       |       |
|          |           | Location     | camp, forest     | Location     | sea shore |       |       |
|          |           | Time         | daylight         | Time         | holiday   |       |       |

$$\frac{1}{2} \left( \frac{1}{1 + \operatorname{dist}(v_i, v_j)} + \frac{1}{1 + \operatorname{dist}(o_i, o_j)} \right) + \operatorname{Attri}$$

Hypernymy:WordNet hypernymy :+ Attribute hypernymy $v_i, v_j$  and  $o_i, o_j$ 

Temporal: Generalized Sequence Pattern mining over statistics with gaps #(asynset<sub>1</sub> precedes asynset<sub>2</sub>) / #(asynset<sub>1</sub>) #(asynset<sub>2</sub>)

#### Probabilistic soft logic - refining Typeof (T), Similar (S) and Prev (P) edges



- 1. Parents often inherit prev. (P) edges from their children:  $P(a, b) \wedge T(a, a') \wedge T(b, b') \Rightarrow P(a', b').$
- 2. Similar activities are likely to share parent types  $S(a,b) \wedge T(b,b_0) \Rightarrow T(a,b_0)$ .
- 3. Likely mutual exclusion between edge types:  $T(a,b) \wedge S(a,b) \Rightarrow \neg P(a,b).$
- 4. Siblings are likely to be similar:  $T(a,c) \wedge T(b,c) \Rightarrow S(a,b).$
- 5. Similarity is often transitive:  $S(a,b) \wedge S(b,c) \Rightarrow S(a,c).$
- 6. Similarity is normally symmetric:  $S(a,b) \Rightarrow S(b,a).$



| Go up an | elevation | Climb up a             | mountain         | Hike up a              | hill      |   | Drink | wate |
|----------|-----------|------------------------|------------------|------------------------|-----------|---|-------|------|
|          |           | Participating<br>Agent | climber,<br>rope | Participating<br>Agent | climber   |   |       |      |
|          |           | Location               | camp, forest     | Location               | sea shore | - |       |      |
|          |           | Time                   | daylight         | Time                   | holiday   |   |       |      |

#### Tie the activity synsets

Break cycles

Resultant: DAG

## Recap

- Defined a new problem of automatic acquisition of semantically refined frames.
- Proposed a joint method that needs no labeled data.



## Evaluation

| Knowlywood       | Statistics        |
|------------------|-------------------|
| Scenes           | 1,708,782         |
| Activity synsets | 505,788           |
| Accuracy         | $0.85 \pm 0.01$   |
| URL              | bit.ly/knowlywood |

#Scenes is aggregated counts over *Moviescripts, TV serials, Sitcoms, Novels, Kitchen data.* 

Evaluation: Manually sampled accuracy over the activity frames.

## **Evaluation: Baselines**

- No direct competitor providing activity frames.

KB Baseline: Our semantic frame (rule based) structure over the crowdsourced commonsense KB **ConceptNet** 

Methodology Baseline: A rule based frame detector over our data and other data using an open IE system **ReVerb** 

## **KB** Baseline

You open your wallet hasNextSubEvent take out money Normalized domain: concept1 ~ verb [article] noun Organize and canonicalized the relations as follows:

| ConceptNet 5's relations                                                | We map it to |
|-------------------------------------------------------------------------|--------------|
| IsA, InheritsFrom                                                       | type         |
| Causes, ReceivesAction, RelatedTo, CapableOf, UsedFor                   | agent        |
| HasPrerequisite, HasFirst/LastSubevent,<br>HasSubevent, MotivatedByGoal | prev/next    |
| SimilarTo, Synonym                                                      | similarTo    |
| AtLocation, LocationOfAction, LocatedNear                               | location     |

#### Methodology Baseline

Reverb, an openIE tool extracts SVO triples from text

- S and O are only surface forms.
- V is not categorized into a relation. We use a Bayesian classifier to estimate the label of V
- The estimates come from MovieClips.com that provides 30K manually tagged popular movie scenes like, **action**: singing, **prop**: violin, **setting**: theater

$$P(\text{class}|\text{word}) = \frac{P(\text{class},\text{word})}{\sum_{w_i} P(\text{class},w_i)}$$

### Methodology Baseline

Reverb, an openIE tool extracts SVO triples from text

- S and O are only surface forms.
- V is not categorized into a relation. We use a Bayesian classifier to estimate the label of V

The estimates come from MovieClips.com that provides 30K manually tagged popular movie scenes like, **action**: singing, **prop**: violin, **setting**: theater

| MovieClips tag | Knowlywood attributes | Example      |
|----------------|-----------------------|--------------|
| action         | activity.v            | cut          |
| prop           | activity.o            | knife        |
| setting        | location              | bar          |
| occasion       | time                  | thanksgiving |
| charactertype  | participant           | policeman    |



|                  | # activities |                               |
|------------------|--------------|-------------------------------|
| Knowlywood       | ~1 M         | High accuracy & high coverage |
| ConceptNet based | ~ 5 K        | High accuracy & low coverage  |
| Reverb based     | ~ 0.3 M      | Low accuracy & high coverage  |
| Reverb clueweb   | ~ 0.8 M      | Low accuracy & high coverage  |

# Visual alignments

~30,000 Images from movies, and additionally, >1 Million images via Flickr tag matching:



## External use case -1 : Semantic indexing

Given: participant, location and time Predict: the activity Ground truth: Movieclip's manually specified activity tag.

|            | MRR   | Hit rate | Atleast one hit in<br>Top 10 predictions |
|------------|-------|----------|------------------------------------------|
| ReVerbClue | 0.070 | 0.180    |                                          |
| ConceptNet | 0.143 | 0.345    |                                          |
| ReVerbMCS  | 0.254 | 0.415    |                                          |
| Knowlywood | 0.327 | 0.610    |                                          |

#### External use case 2: Movie Scene Search

| mark go hunting with sophie 's dad.    | jeremy go hunt-   |          | Carlos   | s an    | nd Susa | n are    | still   | paintin | g over  |
|----------------------------------------|-------------------|----------|----------|---------|---------|----------|---------|---------|---------|
| ing with sophie 's dad. mark tries to  | kill a bird . the | the      | graffiti | on      | the wal | l as     | those   | people  | discuss |
| man injures it simply. the man tries t | To ]              | Kill a M | ockin    | ng Bird | , hov   | vever    | , while | talking |         |
| from Sitcom: Peep Show                 | İ                 | from     | TV serie | s: Desj | perate  | Housewiv | ves     |         |         |

Method: A generative model encoding that a query holistically matches a scene if the participants and activity fit well with the query.

$$P(q|s_t) = \sum_{a \in K} \sum_{p \in A_p} P(q|a) \cdot P(a|p) \cdot P(p|s_t)$$

### Conclusion







#### External use case -1 : Semantic indexing

Given: participant, location and time Predict: the activity Ground truth: <u>Movieclip's</u> manually specified activity tag.

|            | MRR   | Hit rate 🔹 | <u>Atleast</u> one hit in<br>Top 10 predictions |
|------------|-------|------------|-------------------------------------------------|
| ReVerbClue | 0.070 | 0.180      |                                                 |
| ConceptNet | 0.143 | 0.345      |                                                 |
| ReVerbMCS  | 0.254 | 0.415      |                                                 |
| Knowlywood | 0.327 | 0.610      |                                                 |

# Thank you! Browse at bit.ly/webchild