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Abstract. Despite the emergence and growth of numerous large knowl-
edge graphs, many basic and important facts about our everyday world
are not readily available on the Web. To address this, we present Web-
Brain, a new approach for harvesting commonsense knowledge that relies
on joint learning from Web-scale data to fill gaps in the knowledge acqui-
sition. We train a neural network model to learn relations based on large
numbers of textual patterns found on the Web. At the same time, the
model learns vector representations of general word semantics. This joint
approach allows us to generalize beyond the explicitly extracted infor-
mation. Experiments show that we can obtain representations of words
that reflect their semantics, yet also allow us to capture conceptual rela-
tionships and commonsense knowledge.

1 Introduction

Motivation. In the past decade, massive amounts of machine-readable knowl-
edge have become available, both in large knowledge graphs such as DBpedia,
YAGO, and GeoNames, as well as through the widespread adoption of stan-
dards such as schema.org for Web pages. Additionally, information extraction
techniques allow us to mine further knowledge from natural language text. To
date, such data has mainly been used for improved information interchange and
integration, e.g. for better Web search results on entity-focused queries or for
novel kinds of visualizations that combine information from different sources.

However, while there are numerous bots and services that scour the Web to
exploit a particular (often hard-coded) kind of information, we still lack intel-
ligent systems that more flexibly draw advanced conclusions from information
found on the Web. Among the missing ingredients, the lack of required world
knowledge stands out as particularly relevant. This includes knowledge that is
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less of the factual, encyclopedic kind found in DBpedia, but more related to a
general understanding of everyday objects and concepts in the world. In some
cases, such commonsense knowledge can be expressed as subject-predicate-object
triples, similar to those used for factual knowledge. Relevant predicates include
causes (e.g., fire causes heat), hasProperty (e.g., ice has the property of being
cold and ice cream has the property of being sweet), partOf (e.g., legs as parts
of humans), and usedFor (e.g., that keys can be used to open doors).

Goal. We ultimately aim at a system capable of guessing the truth of common-
sense facts (e.g. whether a dog can fly), based on knowledge seen on the Web. How-
ever, procuring this sort of knowledge from the Web is non-trivial because shared
assumptions about the world are often taken for granted such that it would be rare
if not strikingly odd for someone to write that tractors are inedible or that radiol-
ogists are capable of breathing. Thus, information extraction alone is insufficient
for equipping computational systems with commonsense knowledge.

Overview and Contribution. In this paper, we propose a joint learning app-
roach to acquire commonsense knowledge both from explicit and implicit tex-
tual information. explicit triples and on large-scale word co-occurrence informa-
tion. We optimize matrix representations of relations explicitly mined from large
amounts Web data using a custom information extraction approach designed to
minimize noise when applied to Web-scale data. At the same time, concepts are
modeled as vectors trained on large-scale text following the word2vec CBOW
approach to capture generic semantics [22].

As a result, our approach jointly learns representations of words and relations
to better reflect our natural understanding of them. In particular, we are able to
exploit general Web-scale semantics when learning commonsense relationships,
e.g. inferring from eagles being capable of flying that hawks are likely also capable
of the same. Our experiments show that we can obtain representations that
simultaneously capture conceptual relationships as well as word meanings.

2 Background and Related Work

Commonsense knowledge acquisition has been studied for many years now. Tra-
ditionally, such knowledge was modeled by human experts, an approach best
exemplified by the Cyc project [18], a decades-long commercial effort at creat-
ing a large axiomatic rule base. The SUMO ontology [24] shares this goal, but
relies on open source principles and more collaborative development processes.
However, in both cases, contributing requires significant expertise and effort in
knowledge modeling. Although feasible for specific domains, it is difficult to
obtain extensive amounts of commonsense knowledge in this way.

For large-scale commonsense knowledge acquisition, there are two more
promising directions. The well-known ConceptNet project [12] relies on crowd-
sourcing, aiming at much simpler commonsense knowledge propositions. Another
approach is to turn to large-scale data mining. Many information extraction
papers follow the bootstrapping method proposed by Hearst [13], who used lin-
guistic patterns to mine isA relationships. However, pattern-based approaches
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tend to extract only few facts and suffer from significant problems with noise.
Several approaches have been proposed to improve bootstrapping in general
[25,31]. Another route is to develop improved algorithms catering to particular
kinds of information, e.g. temporal knowledge [9], properties and attributes [30],
or activity knowledge [32].

Irrespective of whether one relies on crowdsourcing or data mining, how-
ever, it is necessary to generalize and expand beyond what has explicitly been
acquired. For instance, we may have obtained that Samoyed dogs have fur but
we may not have explicitly found this to be the case for shiba inus as well.

This leads us to the task of knowledge base completion [26]. When relying
on machine learning, this typically becomes a relation prediction task. Given a
a training set of true example instances of relations, i.e. triples, the goal is to
learn a model that can then be used to predict whether a new, previously unseen
triple is true or false. While the relation itself will have occurred in the training
set, the specific triple will be new.

One approach is to consider this a tensor or matrix completion problem. For
instance, if we view a relation as a matrix between subjects and objects storing
their truth values, then relation prediction boils down to filling in the missing
values to complete the matrix. Previous work in this area includes AnalogySpace
[28], which relied on singular value decomposition applied to ConceptNet extrac-
tions. Nickel et al.’s RESCAL [23] uses tensor factorization to model rela-
tionships, targeting collective classification and entity resolution. Sutskever et
al. [29] propose Bayesian clustered tensor factorization to model relational data.
Jiang et al. [16] proposed a generative probabilistic model for relation prediction
based not only on existing triples but also on information extraction.

A more recent line of work uses neural networks for relation prediction.
Bordes et al. [4–6,15] proposed several neural network architectures to capture
relation triples, the most well-known of these being the TransE approach, which
models the relation as a translation from a vector for the subject to a vector for
the object. Numerous variations have been proposed that modify how the rela-
tion is modeled. For instance, Socher et al. [27] propose neural tensor networks
(NTN), in which each relation is represented as a tensor. TransH [35] models
relations as translations on hyperplanes. TransR [20] adds extra projections of
entity vectors for each specific relation, or, in the CTransR variant, for each
cluster of relations. PTransE [19] attempts to consider inference via property
paths to improve the prediction of a triple (for example, x bornInCity y, y
cityInState z helps us predict x bornInState z).

Our approach differs from all such previous efforts by learning to generalize
not just based on the existing triples, as done by matrix and tensor methods as
well as the TransE-related neural models, but by additionally exploiting semantic
information derived from large-scale text statistics. As we show in our experi-
ments, pure relational modeling does not result in semantically satisfactory word
vector representations. Our joint model alleviates this problem by enabling the
choice of word representations to benefit from large amounts of raw text, sim-
ilar to the way humans draw on general semantic associations as well as more
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explicit information. Since the word vectors are constrained to reflect semantic
similarity, we use more flexible matrix representations of relations rather than
simple translations as in the TransE model. Compared to the NTN model, in
contrast, we model relations in a less flexible way, so as to ensure a mutual
influence between commonsense relations and word representations. Compared
to Jenatton et al. [15], which in turn is related to the NTN model, we do not
use any 1-gram or 2-gram features, but directly use the product as a scoring
function. We also forgo requiring that the matrix be the sum of rank-1 matrices.
This enables our approach to scale to much larger data sets such as DBpedia.

Our joint model learns word representations that allow us to better trans-
fer knowledge between related concepts. We rely on Mikolov et al.’s word2vec
CBOW approach [22], who simplified previous neural language models [1] for sig-
nificantly greater scalability. They also introduced the Skip-Gram model as an
alternative, but in our approach, we build on the CBOW variant, as it is faster to
optimize. There have been other proposals to adapt the word2vec models. Several
approaches aim at improving word vectors using additional knowledge of seman-
tic similarity [8,37]. These are based on generic semantic similarity rather than
capturing specific kinds of relations. Hill and Korhonen [14] presented a model
for multi-modal representations, training on large amounts of image labels and
text, with a minor addition of 638 abstract concept descriptions.

Bollegala et al. [3] proposed a method for obtaining improved word vectors by
exploiting information about the lexical patterns they occur in. This approach is
aimed at obtaining vectors that better reflect word analogies but does not address
our model’s goal of relation prediction. Xie et al. [36] exploit entity description
glosses but do not use large-scale text. Wang et al. [34] proposed the probabilistic
TransE model, capturing Freebase triples following the TransE model, but also
viewing the co-occurrences of two phrases as a relationship that should likewise
be modeled as a translation. Their model uses two vectors per phrase and an
alignment component to connect entities to phrases. Our model uses just a single
vector per word, so mutual dependencies between word vectors are exploited
to a greater degree, while the relation modeling is less constrained due to the
use of matrices, so a greater divergence from the word relationships is enabled.
Toutanova et al. [33] also attempt to model relationships between two entities
found in text, but use syntactic dependency trees and apply a convolutional
neural network over them to obtain relation representations. In contrast, we
exploit any occurrence of a word, not just explicit relationships between two
entities in a sentence.

3 Web-Scale Knowledge Bootstrapping

Pattern-Based Information Extraction. For knowledge acquisition, it is
well-known that one can attempt to induce patterns based on matches of seed
facts, and then use pattern matches to mine new knowledge [13]. Unfortunately,
this bootstrapping approach suffers from significant noise when applied to large
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Web-scale data [31], which appears necessary in order to mine adequate amounts
of training data. Specifically, we rely on Google’s large Web N-Gram dataset (see
Sect. 5). This problem is exacerbated by the fact that we are aiming at com-
monsense knowledge, which is not typically expressed using explicit relational
phrases. We thus devise a custom bootstrapping approach designed to minimize
noise when applied to Web-scale data.

We assume that we have a set of relations R, a set of seed facts S(r) for a
given r ∈ R, as well as a domain(r) and range(r), specified manually to provide
the domain and range of a given r as its type signature. For pattern induction,
we look for co-occurrences of words in the seed facts within the n-grams data (for
n = 3,4,5). Any match is converted into a pattern based on the words between
the two occurrences, e.g. that apple is red would become 〈x〉 is 〈y〉.
Pattern Scoring. The acquired patterns are still rather noisy. To score the
reliability of patterns, we rely on a ranking function that rewards patterns with
high distinct seed support but also discounts patterns that occur across multiple
dissimilar relations [31]. The intuition is that a good pattern should match many
of the seed facts, but should not be overly generic so as to apply to many relations
(as, e.g., 〈x〉 or 〈y〉). A pattern with many matches for both hasLocation and
partOf is less likely to be a reliable one.

Still, a pattern that matches isa or hasLocation may also match a relation
such as conceptuallyRelatedTo. To allow for this, we first define a relatedness
score between relations. We can either provide these scores manually, or consider
Jaccard overlap statistics computed directly from the seed assertion data. Let
p be a candidate pattern and r ∈ R be the relation under consideration. We
define |S(r, p)| as the number of distinct seeds s ∈ S(r) under the relation r that
p matches. We then define the score of the pattern p for relation r as:

φ(r, p) =
∑

r′∈R,r′ �=r

|S(r, p)|
|S(r)| − (1 − sim(r, r′))

|S(r′, p)|
|S(r′)|

where sim(r, r′) is the similarity between relations r and r′. At the end, we choose
the top-k ranked patterns as the relevant patterns for the extraction phase.

Assertion Extraction. We apply the chosen patterns to find new occurrences
in our (Google Web N-grams) data. For instance, 〈x〉 is 〈y〉 could match the sun
is bright , yielding (sun, bright) as an assertion for the hasProperty relation. To
filter out noise from these candidate assertions, we check if the extracted words
match the required domain and range specification for the relation, using Word-
Net’s hypernym taxonomy. Finally, we rank the candidate assertions analogously
to the candidate patterns, but treating the patterns as seeds.

4 Representation Learning and Prediction

Figure 1 provides an overview of our approach. Having extracted triples from
text, the next step is to train a model for learning commonsense word and
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Fig. 1. Schematic overview of our approach.

relation representations. Our model takes the extracted knowledge and learns to
generalize it by simultaneously drawing not only on the extractions but also on
large amounts of generic text. For instance, we may have observed that pigeons
fly but not that sparrows do. Our model aims to infer the latter based on both
the extracted facts as well as general semantic relatedness between pigeons and
sparrows. For the latter, we use word co-occurrences observed in large amounts
of text. While word co-occurrences provide only weak signals of semantic related-
ness, we can benefit from their large quantities. Thus, their overall contribution
may make up for some of the sparsity of the explicitly extracted knowledge.

At the same time, word representations can also benefit from the joint learn-
ing setup. We learn word meanings not only from general context information,
but also from the extracted relationships. For instance, we may have extracted
that roses tend to have the property of being red, or that fire causes heat. From
a cognitive perspective, commonsense knowledge about concepts is salient and
should also guide the meaning representation of words.Distributional semantics
has a long history, which has often been linked to J.R. Firth’s famous quote that
one shall “know a word by the company that it keeps”. Still, while it is indis-
putable that regular contexts play a vital role in meaning acquisition, words
and concepts are often acquired by other means than just from general con-
texts. Depending on the situation, humans may pay special attention to certain
cognitively salient features and relationships of an object (e.g., appearance and
function). In our approach, we thus train concept representations jointly with
relationship representations, exploiting both the general contextual information
and the mined relationship data.

This also touches on the long-standing dispute about whether mental rep-
resentations of concepts are best modeled using discrete symbolic methods or
in connectionist models based on numerical information processing. Whilst this
has sometimes been regarded as an irreconcilable dichotomy, models like the one
we propose here learn neural representations of words but also capture explicit
symbolic relationships between them.
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4.1 Objective

For the general word co-occurrence information, we adopt the word2vec CBOW
objective [22]. The idea is to find vector representations of words such that the
surrounding words enable the prediction of a given target word. One maximizes

∑

w

log P (w | C(w)), (1)

where w denotes a word token in a large corpus and C(w) denotes the context
words. In the CBOW model, w is represented by a dense, real-valued word
vector vw and the context C(w) is represented by the average of the vectors for
the surrounding words. The resulting context vector is used to predict vw.

Simultaneously, we jointly optimize for modeling the explicit relationships
mined earlier. We assume that we have extracted labeled relationships between
words. These can be viewed as (s, r, o) tuples consisting of a left word s (the
subject), a predicate (relation) r, and a right word o (the object). We wish to
use matrices and vectors to capture the information that the extracted relational
data provides. We still assume every word is mapped to a vector, but additionally
map each relation type to a specific matrix. To learn these representations, we
seek to maximize a scoring function over all relation triples. We define

f(s, r, o) = vᵀ
sMrvo,

where vs is the word vector for the subject s of the relation triple and vo is
the word vector for the object o, while Mr is a matrix for relation r. If Mr

is the identity matrix, then this function will compute a simple dot product
measuring the similarity of the two vectors. If Mr is some other form of diagonal
matrix, f would compute a weighted vector similarity. Other forms of Mr can
capture transformations of the two vectors. The word vectors, described by vs
and vo here, are jointly modified by both the CBOW and the relation modeling
components, while the relation matrices Mr are only modified by the latter. For
this relation modeling, we rely on the following loss function to quantify the
error:

Ls,r,o,l = −l log(σ(f(s, r, o))) − (1 − l) log(1 − σ(f(s, r, o))), (2)

where σ(·) is the sigmoid function σ(x) = 1
1+e−x and l is the label of the training

triple s,r,o (1 for positive training examples and 0 for negative ones).
Finally, we train our model to learn representations both from the relations

and using the word2vec CBOW objective, to exploit the contextual statistics
from large raw text corpora, thus making our representations more meaningful,
as we will show later on in the experiments. Our overall loss function is as follows
(with a parameter β to control the relative contributions):

∑

(s,r,o,l)

−l log(σ(f(s, r, o))) − (1 − l) log(1 − σ(f(s, r, o)))

+β
∑

w

− log P (w | C(w)) (3)
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4.2 Training

During training, we seek to minimize this loss by simultaneously optimizing both
parts of the objective. For the CBOW part, we follow the well-known negative
sampling procedure [22]. For the relation tuples, the training procedure is as
follows. Given a training tuple, we generate k random negative examples by
replacing the subject or object with a random word. Every triple is mapped
to the corresponding word vectors and relation matrices. For each triple, both
negative and positive ones, we optimize the loss function mentioned above.

For this optimization, we rely on stochastic gradient descent, which involves
repeatedly picking random training examples, evaluating the current model on
them, and making small updates if the model gives an incorrect answer. The
direction of an update step is given by the gradient of the objective function,
while the learning rate is a small factor that determines how much we move
the model parameters (in our case, the values in the word vectors and relation
matrices) in this direction. The gradients with respect to the second sum in Eq. 3
are as for the standard word2vec CBOW model, while for the first sum they are
as follows:

∂Ls,r,o,l

∂vs
= (1 − l)Mrvo

∂Ls,r,o,l

∂vo
= (1 − l)Mᵀ

r vs
∂Ls,r,o,l

∂Mr
= (1 − l) vsv

ᵀ
o

Although individual updates with respect to the two parts of the objective func-
tion may pull the model in different directions, stochastic gradient descent nor-
mally finds stable solutions in the long run. In our case, this is expected because
objects with similar extracted properties are also likely to be similar from a word
semantics perspective. Our experimental results confirmed this.

5 Experiments

5.1 Data and Extraction

General Corpus. For our experiments, we rely on two datasets. The first is a
frequently used dump of the English Wikipedia1 that serves as our general corpus
for word representation learning. We normalize the text to lower case and remove
special characters, obtaining 1,205,009,210 tokens after this preprocessing.

Extraction Corpus. In order to extract relations, we turn to a Web-scale
resource based on much larger quantities of text, the Google Web 1T N-gram
dataset2. Although this data is limited to short 5-grams, it is well-suited for the
kind of general commonsense knowledge relationships between words that we
are targeting.

Seed Data. In order to bootstrap the extraction process, we rely on seed facts
taken from the ConceptNet dataset [21] to induce patterns for each common-
sense relation in ConceptNet. Examples of these relations include atLocation,
1 http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2.
2 https://catalog.ldc.upenn.edu/LDC2006T13.

http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
https://catalog.ldc.upenn.edu/LDC2006T13
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causes, hasProperty, motivatedByGoal, partOf, and usedFor. This data is
rather noisy, mostly due to incorrect natural language analysis of crowdsourced
statements. We further find that more than 90 % are named entities, since Con-
ceptNet also imports from other existing knowledge sources. We remove these
and also generally filter out all concepts not in WordNet, a lexicon containing
mostly general words. At this point, we obtain a size of nearly 192 K assertion
triples. We then applied a score threshold of 5 (i.e., we enforce that at least
five crowdsourcing annotators agree) to filter out further noise. Additionally, we
required that the subject and object of each triple match our domain(r) and
range(r) for the involved relation r. This is checked using the WordNet taxon-
omy [10]. For instance, for the hasProperty relation, we accept (apple, red),
because apple is classified as a physical noun in WordNet and red as an adjec-
tive. A manual annotation of two random samples of size 200 revealed that the
raw ConceptNet facts had an accuracy of only 53 %, while the filtered seed facts
had an accuracy of 99 %.

5.2 Extraction

We then follow the extraction approach described in Sect. 3. Applying the seeds
to our Web-scale n-grams, we obtain large numbers of patterns. Table 1 shows
the top patterns for a few example relations.

These patterns then give rise to vast quantities of commonsense relation
triples, each consisting of word pairs as well as the relation between them. We
extract triples for 24 different relation types.

After filtering for noise we are left with a total of 1,160,136 extractions,
e.g. (abbey, church) for the isA relation, or (telephone, notice) for the usedFor
relation3

Before training, we filter out triples that contain words appearing less than
100 times in Wikipedia and obtain 1,158,141 triple instances. We split the data
and use 118,826 triples each for validation and testing, and the remaining ones
for training. We also obtain a human-created gold dataset as ground truth, by
taking a human-verified subset of ConceptNet with over 20,000 triples.

Table 1. Top-k patterns for some relations

AtLocation IsA UsedAs MadeOf HasProperty

X across Y X was only Y X used to Y X made of Y X is very Y

X inside Y X except Y X is used to Y X repair Y X can be Y

X outside Y X called Y X designed to Y X is made of Y X is too Y

X near Y Y is X X was used to Y X made from Y X may be Y

X under Y X means any Y X to help Y X cast Y X is as Y

3 See http://gerard.demelo.org/webbrain/.

http://gerard.demelo.org/webbrain/
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Fig. 2. Accuracy for every relation type comparing the fixed vector baseline (dark blue)
and the joint training of WebBrain (brighter red). (Color figure online)

Our goal is to use this knowledge in order to train a neural network so as
to learn word vectors that reflect semantic and commonsense knowledge, and
to be able to generalize this to new commonsense not directly observed in the
data. This should enable the representations to capture cognitively salient infor-
mation inherent or associated with word meanings, e.g. that a tyre is part of
a car. We can train the word vector representations by jointly optimizing for
the relations and optimizing for the word2vec CBOW model. Raw text like that
from Wikipedia provides regular contexts, while the triples describe common
sense relationships, thus contributing different kinds of information to the rep-
resentations.

5.3 Training

We consider several experimental setups. In the first setup, we pre-initialize the
word representations using vectors from the word2vec CBOW model, utilizing
the information from the Wikipedia text corpus. To test if these representations
alone can successfully be used to reflect the relations, in this first setup, we fix
the embeddings during the training and just modify the relation matrices. The
training proceeds for 10 iterations.

In the second setup, we pre-initialize the vectors in the same way but allow
both the vectors and the relation matrices to be modified during the 10 training
iterations. In the third setup, instead of pre-initializing the vectors, we train the
relational data jointly with the word2vec CBOW model, optimizing both simul-
taneously. In all setups, we use a vector dimensionality of 50 in order to reduce
the runtime. In the relation-only setups, following the literature, we normalize
the word vectors during the training and use a standard learning rate of 0.01.
For each training triple, we generate 5 negative examples by randomly replacing
its left or right word with a random word in the vocabulary. The vocabulary is
created with words appearing at least 100 times in the Wikipedia.

When we train the triples jointly with the word2vec objective, we optimize
both objectives simultaneously until the CBOW architecture has completed 3
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epochs. This is done in parallel in several threads that can run on multiple cores.
Alongside with several threads for the word2vec model, we create additional
threads for our relational objective function from Sect. 4. This time, we do not
normalize the word vectors in the relational thread, as we are training jointly
and this would not make good use of the raw text. Instead of varying both β and
the learning rates, we simply factor the variation of different possible choices of β
into the choice of learning rate for the relational component. We fixed the CBOW
learning rate at 0.05, while tuning the relational one on the validation data but
also checking the WS-353 word similarity dataset. While there is no separate
held-out dataset available for these word similarities, the much larger MEN
dataset was not used for tuning. We describe these datasets in more detail later
on. Ultimately, we arrived at the a much lower rate of just 0.002 for the relational
data, which avoids distorting the vectors too much. With higher learning rates,
we obtain almost the same results in terms of relation prediction, but the word
vectors become overly biased towards those predictions and the word similarities
correlate less strongly with human judgements.

For comparison, we also experiment with the TransE model as a represen-
tative example of methods that only use the existing relation triples without
relying on information from large-scale text. Following the literature, we set the
starting learning rate to 0.001 and require that the margin between positive
triple and its corresponding negative samples be at least 1. We pre-initialize the
model with the word2vec vectors and train it for 500 iterations, which suffices
for convergence.

The final vectors and matrices successfully separate the positive training
triples and randomly generated negative ones, as indicated in Fig. 3. The y axis
here reports the vᵀ

sMrvo scores. We can see that if we fix the word vectors and
just optimize the matrix, the scores of positive and negative examples mix. If
we allow the word vectors to change, the scores of the positive and negative
examples are better separated.

5.4 Evaluation and Analysis

We attempt to discriminate between positive triples (from the test and gold
sets) and random triples to assess whether our model can successfully capture
the relations and classify unseen triples. In our model, the positive vᵀ

sMrvr
scores are usually bigger than random ones, while in the TransE model, positive
examples usually have smaller scores. We use the validation data set to choose
the threshold. For our model, test examples with scores below the threshold are
classified as negative and those with larger scores are classified as positive. For
the TransE model, the opposite applies.

The classification results are presented in Table 2. Results on the test split
reflect how well our model learns to predict the extractions, while results on
the gold data set reflect to what extent the predicted relationships really hold
true from a ground truth perspective. If we fix the vectors to be the ones from
word2vec (“relations only, fixed vectors”), the accuracy is rather low, suggesting
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Fig. 3. Comparing positive examples in the validation set (dark blue circles) with
negative ones (light red diamonds). Left: vsMrvo scores for WebBrain when vectors
are fixed to the original vectors from word2vec. Right: scores for regular WebBrain.
(Color figure online)

Table 2. Relationship modeling results

Approach Test Gold

TransE 0.976 0.892

WebBrain: relations only, fixed vectors 0.761 0.700

WebBrain: relations only 0.983 0.897

WebBrain joint text+relation model 0.969 0.935

that the word2vec vectors are not well-suited for capturing relational similari-
ties based on commonsense knowledge. However, when we allow our algorithm
to modify the vectors (“relations only”), the resulting model achieves a good
accuracy. We obtain 0.983 on the test data set and 0.897 for the gold, which
is comparable with the TransE model despite our scalable training procedure.
This setting corresponds to using only the first term of Eq. 3.

If we train our relational model jointly with the word2vec CBOW model, i.e.
using the full objective given by Eq. 3, we see a slight reduction in accuracy on the
test set, i.e. in predicting the original extractions. This is understandable, given
that we are no longer optimizing for the goal of predicting relations exclusively.
However, we obtain a significant improvement on the gold data set, showing that
the model better reflects the real properties of concepts. This suggests that the
joint training with general word semantics gives WebBrain better generalization
capabilities than relation prediction models only considering the training triples.

In Fig. 2, we see that the advantage of joint training is consistent across
relation types. For each relation, we plot the fixed vector baseline (left, dark)
and our joint training method (right, lighter). The 24 different relations are
plotted along the x axis, while the y axis corresponds to the accuracy in [0, 1].
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Table 3. Spearman’s ρ for word similarity data

Approach WS-353 MEN

WebBrain: text only 0.621 0.668

WebBrain: relations only 0.316 0.302

WebBrain joint text+relation model 0.632 0.679

Word Representations. We also evaluate the word representations directly,
using two semantic relatedness datasets to assess the semantic similarities
reflected in the word vectors. One is the well-known WS-353 [11] dataset, while
the second is a significantly larger one called MEN [7]. Both contain English
word pairs with similarity judgements elicited from human assessors. We calcu-
late the cosine distance of word vectors for the word pairs in these datasets and
compare them to the scores from the human annotations using Spearman’s ρ.

Table 3 shows how the resulting word representations fare on the WS-353 and
MEN datasets. For the vectors trained just on the relational data, e.g. with the
TransE model, the result is significantly worse than for the text-only model. This
means that, after training, the vectors are optimized for the relations and fail to
reflect much of the information that the raw corpus data provides. However, if we
train jointly, we observe better correlations, indicating that the vectors are able
to maintain the semantic information from the raw corpus contexts.This shows
that our model can modify the word vectors to reflect commonsense relations
without degrading the quality of general word similarities.

5.5 Additional Experiment on DBpedia

Data. We additionally evaluate the model’s performance on DBpedia [2]. We
focus on extractions from the English Wikipedia, using the “mapping-based
types” and “mapping-based properties (cleaned)” data. We consider only URIs
from within DBpedia (starting with “http://dbpedia.org/resource/”), since oth-
ers are not part of DBpedia itself and thus the data only contains very sparse,
incomplete information about them. After preprocessing, we obtain a total of
15,109,444 triples describing 4,222,635 entities and 675 distinct relation types.
We split this data by reserving 15,110 triples as validation data for tuning and
15,110 as a test data set for evaluation. All remaining triples are used as training
data.

Training and Evaluation. To determine the optimal parameter settings, we
rely on the validation data and choose the vector size for the entities from {30,
50, 100}. We run the experiment for {20, 40, 60, 80, 100} iterations. Based on
these options, we select the best-performing set of parameters in terms of their
accuracy on the validation data, as explained below. Following the literature,
we normalize the vectors after every stochastic gradient descent step. For every

http://dbpedia.org/resource/
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Fig. 4. Scores on the DBpedia validation data, computed as ‖vs + vr − vo‖ for the
TransE model (left) and vsMrvo for ours (right), with legend as in Fig. 3.

iteration, we first shuffle the training triples. We decrease the learning rate lin-
early until it reaches 0.0001 of the starting learning rate. At that point, we hold
it constant at that value, i.e. 0.0001 of the starting learning rate.

For comparison, we again also consider the TransE model on this data. We
set the parameters for the TransE model as described in the original paper.
The initial learning rate is set to 0.001, and the optimization proceeds for 1000
iterations. The vector size is also chosen from {30, 50, 100}.

We test the model’s performance by discriminating between true and random
triples. After the training, their classification scores should be different. True
triples should have larger scores than random negative scores and we indeed
observe this result. Figure 4 plots the scores for the validation data set. We
can see that the TransE model already achieves reasonably good results. Most
positive triples have smaller scores. For our model, although we do not use a max-
margin approach, the scores of positive and negative triples separate naturally
as a result of the training objective. True triples usually have positive scores,
while randomly generated ones have negative scores.

We use the validation data set to choose the best threshold that separates
positive from negative triples and then test the model’s ability to discriminate
these on the test data set. For the TransE model, the best result is obtained
with 50 dimensions and a threshold of 7.0, reaching an accuracy of 0.8245. For
our model, setting the dimensionality to 50 and running for 60 iterations, the
threshold is −2.26 and the accuracy is 0.8831. This shows that our model can
successfully predict relationships even for the rich set of entities in DBpedia.

6 Conclusion

We have proposed WebBrain, a novel approach for knowledge acquisition and
modeling, that makes a further step towards the goal of equipping comput-
ers with commonsense knowledge to enable more intelligent systems. Our model
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combines multiple objectives to model word meanings and relationships. We rely
on large-scale Web information extraction and on general corpus co-occurrences
to train our model. While we remain far from genuine commonsense understand-
ing and intelligence, our approach is able to learn vector representations of words
and relations that reflect both their general semantics and basic commonsense
facts about the world, giving accurate answers even for knowledge that has not
been observed in text.

In future work, our joint training approach could also be evaluated with
further relation representation models. This seems particularly promising for
models that incorporate additional reasoning capabilities [19] or constraints [17].
Finally, we wish to extend our approach to combine common-sense knowledge as
extracted from text with the kinds of encyclopedic facts available in DBpedia so
as to obtain a more complete model of world knowledge. We believe that models
of this sort that combine heterogeneous kinds of inputs will enable us to put
semantic resources to use in advanced intelligent systems.
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