WebChild: Harvesting and Organizing Commonsense Knowledge from Web

Niket Tandon

Max Planck Institute for Informatics Saarbrücken, Germany

Joint work with: Gerard de Melo, Fabian Suchanek, Gerhard Weikum

Why Computers Need Commonsense Knowledge

Who looks hot?

pop-singer-n¹ hasAppearance hot-a³

What tastes hot?

chili-n¹ hasTaste hot-a⁹

What is hot?

volcano-n¹ hasTemperature hot-a¹

Why Knowledge Bases Are Not Sufficient

Freebase (+ Dbpedia, Yago, ...)

, _ purnin Brooklyn

Brooklyn locatedly bout named entities

Jay-Z marriy facts about named entities

only facts about named entities

controlled to the second entities

and the second entitles

and the second entities

a

ConceptNet (+ ...)

pop-singer isa musician only has Property or related To

Key Novelties of WebChild

 Fine-grained relations for commonsense knowledge (derived from WordNet): hasAppearance, hasTaste, hasTemperature, hasShape, evokesEmotion,

2. Sense-disambiguated arguments of knowledge triples (mapped to WordNet):
pop-singer-n¹ hasAppearance hot-a³
chili-n² hasTaste hot-a⁹
volcano-n¹ hasTemperature hot-a¹

Semantically refined commonsense triples

1. Extract generic:

salsa

hasProperty

hot

Patterns

beautiful rose

salsa was really hot

••

<adj> <noun> <noun> [adverb] <adj>

Semantically refined commonsense triples

1. Extract generic: salsa

hasProperty

hot

2. Refine: salsa-n¹

hasTaste

hot-a⁹

WordNet "hot"

19 fine-grained relations

- 1. hasEmotion
- hasSound
- 3. hasTaste
- 4. hasAppearance

...

Semantically refined commonsense triples

Domain Population

Computing Assertion

Range Population

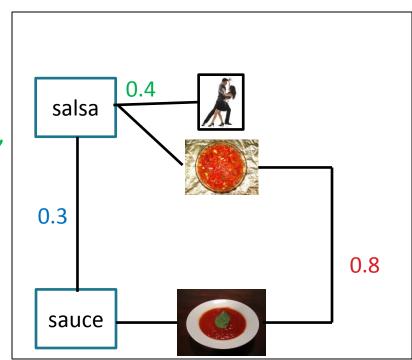
salsa-n¹ Refine:

what has taste

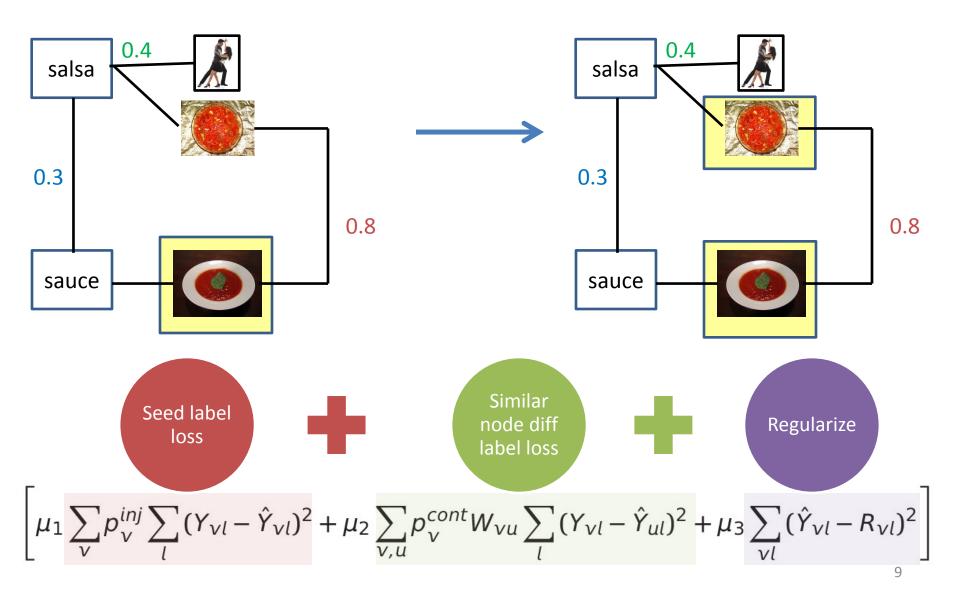
pizza-n¹ sauce-n¹ java-n²

hasTaste disambiguate, classify, rank

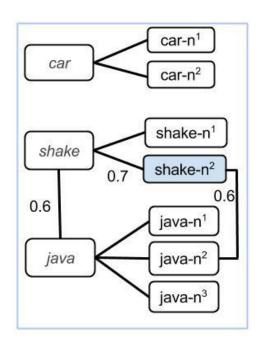
chocolate-n², sweet-a¹ milk-n¹, tasty-a¹

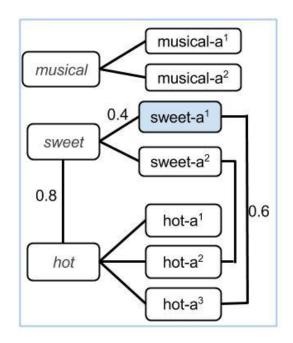

hot-a⁹ how does it taste

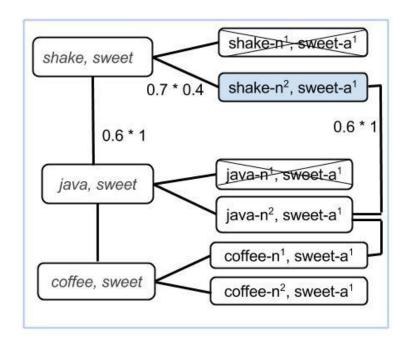
spicy-a¹ hot-a⁹ sweet-a¹


Graph construction per relation (e.g. hasTaste)

- Edge weight:


taxonomic (between senses), co-occurrence statistics (between words), distributional (between word, senses).




Label Propagation on constructed graph for domain of hasTaste

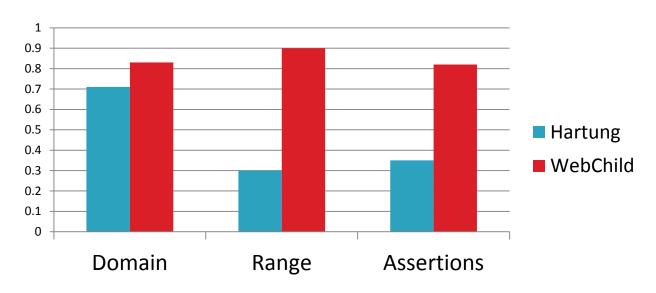
WebChild: Model

Domain (hasTaste)

Range (hasTaste)

Assertions (hasTaste)

Similar node diff label loss



Regularize

$$\left[\mu_{1}\sum_{v}p_{v}^{inj}\sum_{l}(Y_{vl}-\hat{Y}_{vl})^{2}+\mu_{2}\sum_{v,u}p_{v}^{cont}W_{vu}\sum_{l}(Y_{vl}-\hat{Y}_{ul})^{2}+\mu_{3}\sum_{vl}(\hat{Y}_{vl}-R_{vl})^{2}\right]$$

Experiments

Accuracy: over manually sampled data.

Statistics: Large, semantically refined commonsense knowledge.

	#instances	Precision
Noun senses	221 K	0.80
Adj senses	7.7 K	0.90
Assertions	4.6 M	0.82

WebChild: Examples

Domain (hasShape)

face-n¹

leaf-n¹

• • •

Range (hasShape)

triangular-a¹

tapered-a¹

...

Assertions (hasSshape)

lens-n¹, spherical-a²

palace-n², domed-a¹

• • •

Set expansion for: keyboard-n¹

Top 10 adjectives	ergonomic, foldable, sensitive, black, comfortable, compact, lightweight, comfy, pro, waterproof
Ton F	keyboard ush keyboard computer keyboard gwerty keyboard entical

keyboard, usb keyboard, computer keyboard, qwerty keyboard, optical mouse, touch screen

Set expansion for: keyboard-n²

Top 10	universal, magnetic, small, ornamental, decorative, solid, heavy, white,
adjectives	light, cosmetic
Table 6	

wall mount, mounting bracket, wooden frame, carry case, pouch expansions

Conclusion

- Graph methods help overcome sparsity of commonsense in text.
- WebChild: First commonsense KB with fine-grained relations and disambiguated arguments; 4.6 million assertions including domain and range for 19 relations. Publically available at: www.mpi-inf.mpg.de/yago-naga/webchild/

Additional slides.

Use Case: Set Expansion

Output: top ranked adjectives and similar nouns (cosine over attributes).

Input: chocolate-n²

Top 10 adjectives	smooth, assorted, dark, fine, delectable, black, decadent, white, yummy, creamy
Top 5 expansions	chocolate bar, chocolate cake, milk chocolate, chocolate chip, chocolate fudge

Input: keyboard-n¹

Top 10 adjectives	ergonomic, foldable, sensitive, black, comfortable, compact, lightweight, comfy, pro, waterproof
Top 5 expansions	keyboard, usb keyboard, computer keyboard, qwerty keyboard, optical mouse, touch screen

Approach

For range and domain population:

- Extract a large list of ambiguous (potentially noisy) candidates.
- Construct a weighted graph of ambiguous words and their senses.
- Mark few seed nodes in the graph.
- Use propagation concept: similar nodes (beautiful) (lovely) have similar labels

For **computing assertion**:

Use the range and domain to prune search space of assertions (for a relation)

Use propagation concept: similar nodes (car, sweet) (car, lovely) similar labels.

Approach: Extract and refine

Google n-grams

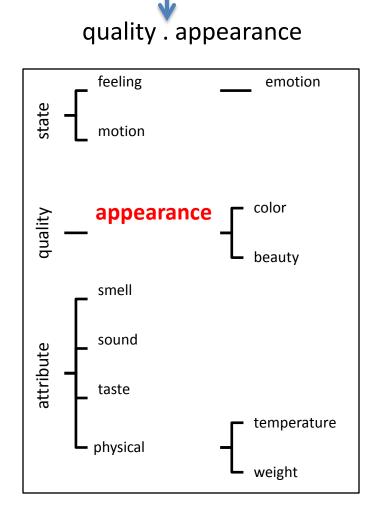
Y/adj X/noun

X/noun linking_verb adverb Y/adj red rose

rose was very beautiful

temperature was hot

Goal: Semantically refined commonsense properties Connect nouns with adjectives via fine-grained relations


hasProperty

1. Extract: suit

2. Refine: suit-n²

WordNet "suit"

- 1. Lawsuit
- 2. Dress
- 3. Playing card suit
- 4. ..

hot

hot-a³

WordNet "hot"

- 1. Burning
- 2. Violent
- 3. Stylish
- 4. ...

Experiments

Accuracy and coverage: manually sampled data.

System	Domain	Range	Assertions
Controlled LDA MFS (Hartung et al. 2011)	0.71	0.30	0.35
WebChild	0.83	0.90	0.82

Statistics: Large, semantically refined commonsense knowledge.

	#instances	Precision
Noun senses	221 K	0.80
Adj senses	7.7 K	0.90
Assertions	4.6 M	0.82

Related Work

	Commonsense Knowledge	Automatically constructed	Unambiguous arguments	Fine-grained relations
Linked Data	*	√	√	*
Сус		*	*	*
Concept Net	√		*	*
WebChild	√	√	✓	✓

Goal: Semantically refined commonsense properties

1. Extract: mole

hasProperty

hot

2. Refine:

mole-n³

taste

hot-a⁴

WordNet "mole"

- 1. Gram molecule
- 2. Skin mark
- 3. Sauce
- 4. Animal

••

19 fine-grained relations

- 1. Emotion
- 2. Sound
- 3. Taste
- 4. Appearance

•••

WordNet "hot"

- 1. Burning
- 2. Violent
- 3. Stylish
- 4. Spicy

• • •

Goal: Semantically refined commonsense properties

Domain Population

Computing Assertion

Range Population

mole-n³ Refine: in **domain** of taste

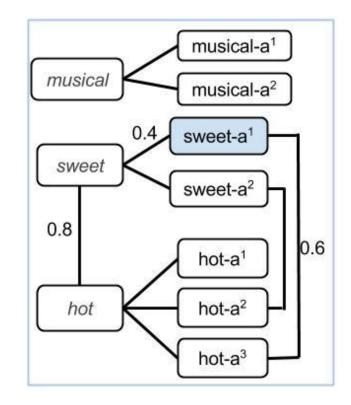
taste disambiguate, **classify**, rank

hot-a⁴ in range of taste

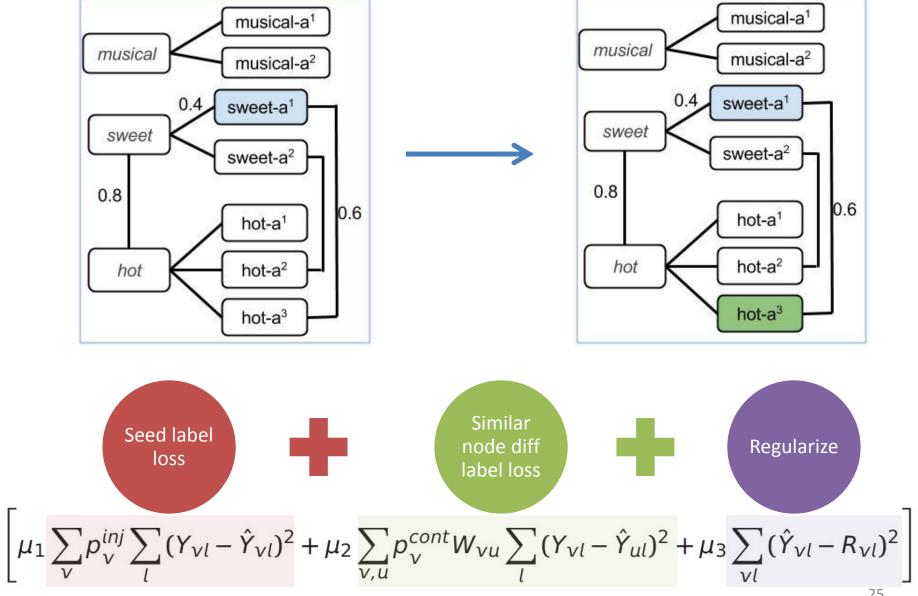
domain (taste)

pizza-n¹ sauce-n¹ java-n²

assertion (taste)


salsa-n¹, hot-a⁴ chocolate-n², sweet-a¹ milk-n¹, tasty-a¹

range (taste)


spicy-a¹ hot-a⁴ sweet-a¹

Graph construction

- Edge weight:
 taxonomic (between senses) ,
 co-occurrence statistics (between words),
 distributional (between word, senses).
- One graph per attr. (here, hasTaste)

Label Propagation on constructed graph

WebChild: Examples

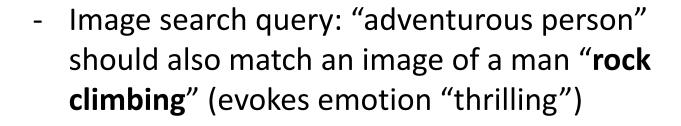
	Domain	Range	Assertions
hasTaste	strawberry-n ¹	sweet-a ¹	biscuit-n², sweet-a¹
	java-n²	hot-a ⁹	chilli-n ¹ , hot-a ⁹
hasShape	face-n ¹	triangular-a ¹	lens-n ¹ , spherical-a ²
	leaf-n ¹	tapered-a ¹	table-n², domed-a¹

Set expansion for: keyboard-n¹

Top 10 adjectives	ergonomic, foldable, sensitive, black, comfortable, compact, lightweight, comfy, pro, waterproof
Top 5 expansions	keyboard, usb keyboard, computer keyboard, qwerty keyboard, optical mouse, touch screen

Why Computers Need Commonsense Knowledge

Who looks cool?


Who lives cool?

Commonsense Knowledge

What is red, edible, tasty and soft?

- What is similar to chocolate bar, but soft?

Why Computers Need Commonsense Knowledge

Who looks cool?

Who lives cool?

Commonsense from the Web

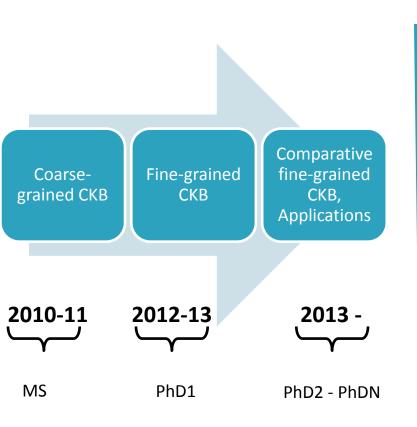


Image search query: "adventurous person" should also match an image of a man "rock climbing" (evokes emotion "thrilling")

What is **red**, **edible**, **tasty** and soft?

Niket Tandon

Supervisor: Prof. Gerhard Weikum Collaborator: Prof. Gerard de Melo Max Planck Institute for Informatics

What is **similar** to chocolate bar, but **soft**?

No results found for "cherries are sweeter than oranges".

Commonsense from the Web

	Commonsense Knowledge	Automatically constructed	Unambiguous arguments	Fine-grained relations
Linked Data	×			*
Сус		*	5 C	*
Concept Net, Tandon AAAI'11			*	*
WebChild WSDM'14			✓	✓