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Abstract Information systems are increasingly making use of taxonomic knowl-
edge about words and entities. A taxonomic knowledge base may reveal that the
Lago di Garda is a lake, and that lakes as well as ponds, reservoirs, and marshes
are all bodies of water. As the number of available taxonomic knowledge sources
grows, there is a need for techniques to integrate such data into combined, unified
taxonomies. In particular, the Wikipedia encyclopedia has been used by a num-
ber of projects, but its multilingual nature has largely been neglected. This paper
investigates how entities from all editions of Wikipedia as well as WordNet can
be integrated into a single coherent taxonomic class hierarchy. We rely on link-
ing heuristics to discover potential taxonomic relationships, graph partitioning to
form consistent equivalence classes of entities, and a Markov chain-based ranking
approach to construct the final taxonomy. This results in MENTA (Multilingual
Entity Taxonomy), a resource that describes 5.4 million entities and is one of the
largest multilingual lexical knowledge bases currently available.

Keywords Taxonomy induction · Multilingual · Graph · Ranking

1 Introduction

Motivation. Capturing knowledge in the form of machine-readable semantic knowl-
edge bases has been a long-standing goal in computer science, information science,
and knowledge management. Such resources have facilitated tasks like query ex-
pansion [34], semantic search [48], faceted search [8], question answering [69], se-
mantic document clustering [19], clinical decision support systems [14], and many
more. Knowledge about taxonomic relationships is particularly important. A tax-
onomic knowledge base may reveal that the Lago di Garda is a lake, and that lakes
as well as ponds, reservoirs, and marshes are all bodies of water.

As the Web matures, more and more sources of taxonomic knowledge are
appearing, and there is an increasing need for methods that combine individual
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taxonomic data into unified taxonomic knowledge bases. While there has been
research on extracting and creating individual taxonomies and on finding align-
ments between two taxonomies, little attention has been paid to this new challenge
of taxonomic data integration, which entails merging taxonomic information from
several possibly noisy data sources.

We focus in particular on Wikipedia, the open, community-developed online
encyclopedia that in the past few years has been recognized as a valuable source of
taxonomic knowledge. Projects like DBpedia [6], YAGO [76], Intelligence-in-Wiki-
pedia [84], and Freebase (freebase.com) have exploited the semi-structured nature
of Wikipedia to produce valuable repositories of formal knowledge that are orders
of magnitude larger than hand-crafted resources like SUMO [54], OpenCyc (open-
cyc.org), or WordNet [31]. To date, however, these extraction efforts have largely
neglected the significant potential of Wikipedia’s multilingual nature. While DB-
pedia and some other knowledge bases do extract abstracts and other information
also from non-English versions, such information is only fully integrated with the
English knowledge when a given article has a corresponding article in the English
Wikipedia. Certainly, the English Wikipedia is by far the most comprehensive ver-
sion. Yet, its articles make up only 25% among those of the 20 largest Wikipedias1.

Although it is certainly possible to construct separate taxonomies from differ-
ent language-specific editions of Wikipedia, an algorithm that is able to aggregate
and combine information from each of these data sources is able to produce a
cleaner output taxonomy while still retaining most of the data source-specific in-
formation.

The algorithm we propose considers the interdependencies between many data
sources, in our case over 200 different editions of Wikipedia as well as WordNet. It
connects the noisy and sometimes conflicting evidence that these sources provide
and derives a single unified taxonomy that is experimentally shown to have a
higher quality than the initial inputs.

We use the algorithm to construct MENTA – Multilingual Entity Taxonomy –
a large-scale taxonomic knowledge base that covers a significantly greater range of
entities than existing knowledge bases. Additionally, MENTA enables tasks like se-
mantic search also in languages other than English, for which existing taxonomies
are often very limited or entirely non-existent. Finally, we also hope that MENTA
will facilitate decidedly multilingual applications like cross-lingual information re-
trieval [29,9], machine translation [42], or learning transliterations [63].

Problem Statement. As input we have a set of knowledge sources. The entity iden-
tifiers used in these knowledge sources need to be connected using some heuristics.
This results in a large but incomplete set of unreliable, weighted statements link-
ing entities to parent entities (taxonomic links) or to equivalent entities (equals
arcs). For a given entity, we often have many candidate parents from different
sources with different weights, and different parents may or may not be related
to each other in terms of equals and subclass arcs (see Figure 2 for an example
scenario).

The aim is to aggregate these unreliable, incomplete taxonomic links between
entities from different sources into a single more reliable and coherent taxonomy.

1 Computed by dividing the number of articles in the English Wikipedia by the sum of all
articles in the 20 largest Wikipedias with respect to the number of articles, as of April 2012.
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The output should be a clean, reliable knowledge base where the entities share a
single upper-level core rather than having a diverse range of separate taxonomies.
Schematically, this task is depicted in Figure 1.

Fig. 1: Taxonomic integration strategy

Contribution. Our contributions include the following.

1. Link Prediction Heuristics: We show information can be extracted from many
multilingual versions of Wikipedia, and devise heuristics to interconnect ar-
ticles, categories, infoboxes, as well as WordNet senses in multiple languages.
The links capture equivalence between items as well as taxonomic relationships.

2. Taxonomic Data Integration: Algorithmically, we show how one can aggregate
and integrate the individual original links between entities, which are somewhat
unreliable, into a single more reliable and coherent taxonomy, as sketched in
Figure 1. This algorithm has two key features:
– It produces aggregated rankings of taxonomic parents for a given entity

based on the amount of evidence for each candidate parent.
– The rankings take into account dependencies between possible parents. In

particular, multiple parents might be equivalent or might stand in some sort
of hierarchical relation to one another. In such cases, computing a ranking
is a lot less straightforward.

Our algorithm addresses this challenge by deriving the output for a specific
entity using the stationary distribution of a Markov chain, in the spirit of
PageRank, but adapted to our specific setting. After a final filtering step, we
obtain a coherent taxonomic knowledge base.

3. The MENTA Knowledge Base: We show how the framework can be applied
to produce a large-scale resource called MENTA, which is novel in several
respects.
– Extended Coverage of Entities: The taxonomy draws on all existing editions

of Wikipedia and hence includes large numbers of local places, people,
products, etc. not covered by the English Wikipedia. For example, the
Quechua Wikipedia has an article about the Bolivian salt lake Salar de
Coipasa, and the Japanese one has an article about Italian Parma ham.
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– Ranked Class Information: Individual entities are linked via instance state-
ments to classes (e.g. City, Airline company, etc.) by exploiting comple-
mentary clues from different Wikipedia languages. The output is ranked,
because it is useful to capture e.g. that the Colorado River being a river is
more salient than it being a border of Arizona.

– Coherent Taxonomy: While Wikipedia is an excellent source of semi-struct-
ured knowledge, it lacks an ontologically organized taxonomy. The category
systems of Wikipedia i) fail to distinguish classes from topic labels (Yellow-
stone National Park is a natural park but not a ‘History of Wyoming ’) ii)
tend to lack a clear organization especially at the most abstract level, and
iii) differ substantially between different languages. MENTA’s clean, global
hierarchical organization connects all entities in the knowledge base, even
if they originate from different editions of Wikipedia or from WordNet.

With these features, MENTA goes beyond other repositories of semantic knowl-
edge. For instance, DBpedia and YAGO do not have a multilingual upper-level
ontology. None of the existing taxonomies have managed to accommodate culture-
specific entities from non-English Wikipedia editions. Even for those entities that
are covered, the DBpedia Ontology provides class information only for around a
third. Likewise, in the field of multilingual taxonomies or hierarchically-organized
multilingual lexical knowledge bases, our knowledge base surpasses all existing
resources in the number of entities described. The largest comparable resources,
BabelNet [52] and WikiNet [51], were developed in parallel to MENTA and also
draw on multilingual information from Wikipedia. However, they do not exploit all
270+ Wikipedia editions and do not emphasize producing a coherent taxonomy.
MENTA is freely available under an open-source license2.

Overview. Section 2 lays out how information is extracted from Wikipedia and
represented in a form amenable to further processing. Section 3 then introduces the
heuristics that are used to interlink entities and provide the input for the taxonomy
induction step. Section 4 describes the actual algorithm for producing the unified
knowledge base with a single taxonomic class hierarchy. Section 5 describes the
system architecture and online interface. Section 6 evaluates the algorithm and
the resulting knowledge base. Section 7 describes related knowledge bases and
approaches. Finally, Section 8 provides concluding remarks.

2 Knowledge Extraction

2.1 Representation Model

We regard taxonomies as knowledge bases that describe relationships between
entities. Entities are taken to include both individual entities as well classes. A
taxonomy of this form could describe the Lago di Garda as an instance of a
Subalpine lake, Subalpine lake as a subclass of Lake, Lake as a subclass of
Body of Water, and so on, up to a universal root node, often called Entity.

2 http://www.mpii.de/yago-naga/menta/
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Definition 1 A statement is a weighted labelled arc in V ×V ×Σ×R+
0 , where V

is a universal set of entity identifiers (nodes) and Σ is a set of arc labels (relations).
A statement (x, y, r, w) expresses that two entities x, y stand in relation r to each
other with weight w, where a weight of 0 means there is no evidence, and strictly
positive values quantify the degree of confidence in the statement being true.

Definition 2 A knowledge base K is a weighted labelled multi-digraph G =
(V,A,Σ) where: V set of entity identifiers that constitute the nodes in the graph,
A is a set of statements as defined above, and Σ is the set of arc labels.

In our case, V contains entity identifiers for Wikipedia pages (including categories
and infobox templates), word senses (“synsets“) defined by WordNet [31], as well
as string literals with language designators. The arc label set Σ includes:

– equals: identity of entities (i.e. two entity identifiers refer to the same entity)
– subclass: the relation between a class and a subsuming generalization of it,

i.e. a parent class
– instance: the relation between an individual entity and a class it is an instance

of (its class, type, or role)
– means: the meaning relationship between a language-specific string entity (a

word or a name) and another entity

A statement might express an instance relationship between University of Trento

and University with confidence 1, or a means relationship between the Polish
name ‘Trydent ’ and the city of Trento. Such statements can easily be cast into an
RDF [37] form, if reification is used to capture the confidence values.

2.2 Extraction from Wikipedia

Entities. Before aggregating information, we parse the raw XML and wiki-markup-
based Wikipedia dumps, extract relevant information, and cast it into our repre-
sentation model to facilitate further processing. In particular, each article page (in-
cluding redirect pages), category page, or template page in an edition of Wikipedia
is given a preliminary entity identifier. Unfortunately, not all information neces-
sary for parsing the Wikipedia dumps is available from within the dumps alone.
We additionally query the web services provided by each server to find out for
instance that in the Tagalog Wikipedia, titles starting with “Kategorya:” refer
to categories (in addition to the default “Kaurian:” and the English “Category:”,
which are also accepted). Such information is normalized, so as to obtain canonical
entity identifiers. Being able to recognize categories is also helpful at a later stage
when constructing the taxonomy.

Statements. Additional information about entities and meta-data about articles
that may be of use later on is extracted and stored with appropriate relations. In
particular, we capture template invocations, cross-lingual “interwiki” links, redi-
rects, multimedia links, category links, and optional factual statements (locatedIn,
bornIn, and so on).

Additionally, we create short description glosses for each article entity (has-
Gloss) by processing wikitext and HTML mark-up and attempting to identify



6 Gerard de Melo, Gerhard Weikum

the first proper paragraph in an article’s wikitext mark-up (skipping infoboxes,
pictures, links to disambiguation pages, etc.). If this first paragraph is too long,
i.e. the length is greater than some l, a sentence boundary is identified in the
vicinity of the position l.

Meanings. Article titles allow us to create means statements connecting entities
with language-specific strings (labels or names) that refer to them. The original ar-
ticle title is modified by removing any additional qualifications in parentheses, e.g.
‘School (discipline)’ becomes ‘School ’. Some articles use special markup to provide
the true capitalization, e.g. ‘iPod ’ instead of ‘IPod ’. If no markup is provided, we
check for the most frequent capitalization variant within the article text.

3 Linking Functions

Given our goal of creating a single more coherent knowledge base from multiple
data sources, especially from the different editions of Wikipedia and WordNet, our
strategy will be to first expose possible connections between different nodes using
several heuristics. After that, in a second step described later on in Section 4, we
integrate these noisy inputs to induce a shared taxonomy.

For the first step, we rely on so-called linking functions to identify how different
entities relate to each other. In particular, Section 3.1 introduces equals linking
functions that identify identical entities, and Sections 3.2 and 3.3 present linking
functions for the subclass and instance relations.

Definition 3 A linking function lr : V ×V → R+
0 for a specific relation r ∈ Σ is a

function that yields confidence weight scores lr(x, y) ∈ R+
0 and is used to produce

statements (x, y, r, lr(x, y)) for pairs of entity identifiers x, y.

Given a set of equals linking functions Le, a set of subclass linking functions
Ls, and a set of instance linking functions Li, Algorithm 3.1 shows how the input
graph is extended with appropriate links. For each linking function l ∈ Le∪Ls∪Li,
we additionally assume we have a candidate selection function σl, which for a given
node x ∈ V yields a set σl(x) ⊆ V containing all nodes y that are likely to have
non-zero scores l(x, y) > 0.

Algorithm 3.1 Linking function application

1: procedure createlinks(G0 = (V0, A0, Σ), Le, Ls, Li,{σl | l ∈ Le ∪ Ls ∪ Li})
2: for all l in Le do . for each equals linking function
3: A0 ← A0 ∪ {(x, y, r, w) | x ∈ V0, y ∈ σl(x), r = equals, w = l(x, y)}
4: for all l in Ls do . for each subclass linking function
5: A0 ← A0 ∪ {(x, y, r, w) | x ∈ V0, y ∈ σl(x), r = subclass, w = l(x, y)}
6: for all l in Li do . for each instance linking function
7: A0 ← A0 ∪ {(x, y, r, w) | x ∈ V0, y ∈ σl(x), r = instance, w = l(x, y)}
8: return G0 = (V0, A0, Σ)

Later on, we will explain how the output of somewhat unreliable linking func-
tions can be aggregated to provide meaningful results. Which heuristics are appro-
priate for a given input scenario depends on the knowledge sources involved. We
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will now describe the specific choices of linking functions that we use to connect
entities in different language-specific editions of Wikipedia as well as WordNet.

3.1 Equality Link Heuristics

We use the following linking functions to generate equals arcs between two entity
identifiers x, y.

3.1.1 Cross-Lingual Linking

If there is a cross-lingual interwiki link from x to y in Wikipedia, e.g. from Trydent

in the Polish Wikipedia to Trento in the English one, this function yields 1, oth-
erwise 0.

3.1.2 Category-Article Linking

The category-article linking function returns 1 when x, y correspond to a category
and an article, respectively, known to be about the same concept, e.g. the category
Abugida writing systems and the article Abugida. This is detected by checking
for specific template invocations on the category page.

3.1.3 Supervised WordNet Disambiguation

A Wikipedia entity like Degree (school) could match several different WordNet
entities for the word ‘degree’, e.g. degree as a position on a scale, or as the highest
power of a polynomial. Likewise, Wikipedia provides several different candidates
for each WordNet entity, e.g. degree as the number of edges incident to a vertex
of a graph, or ‘Degree’ as a brand name. In order to reliably assess the similar-
ity between a Wikipedia article, category, or infobox and a WordNet synset, we
relied on a supervised linking function to disambiguate possible meanings. The
function relies on Ridge Regression [11] to derive a model from a small set of man-
ually labelled training examples (cf. Section 6.2.1). It uses three major signals as
features.

Term Overlap. The term overlap feature quantifies the degree of similarity be-
tween the respective human language terms associated with entities. Here, the set
terms(x) for a Wikipedia entity x is given by its title (after removing additional
qualifications and detecting the correct capitalization, as mentioned earlier) and ti-
tles of its redirection articles. A set of terms for a WordNet entity is retrieved from
the English, Arabic [68], Catalan [10], Estonian [59], Hebrew [60], and Spanish [4]
wordnets as well as from MLSN [21].

For a Wikipedia entity x and a WordNet entity y, the term overlap feature is
then computed as: ∑

tx∈terms(x)

max
ty∈terms(y)

φx(tx, x) φy(ty, y) sim(tx, ty) (1)
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Here, sim(tx, ty) is a a simple similarity measure between terms that returns 1 if
the languages match and the strings are equal after lemmatizing, and 0 otherwise.

For Wikipedia, the additional term weighting φx generally yields 1, while for
WordNet multiple different versions of φy are used in separate features. One option
is to have φy return 1/n when n different meanings of ty are listed in WordNet.
Another option is to use

φy(ty, y) =
1

rank(ty, y) + 1
2

where rank(ty, y) is the rank of a synset y for a word ty as delivered by WordNet
(e.g. 1, 2, . . . ). WordNet places more important word senses first. Finally,

φy(ty, y) =
freq(ty, y)∑

y′ is a noun
synset for ty

freq(ty, y′)

is used as well, where freq(ty, y) provides the frequency of word ty with sense y in
the sense-annotated SemCor corpus.

It turns out that determining the right capitalization of terms aids in avoiding
incorrect matches. WordNet synsets for ‘college’ will then only match articles about
colleges but not articles about films or subway stops called ‘College’.

Cosine Similarity. The cosine vector similarity feature is computed as vT
x vy (||vx||2

||vy||2)−1 for vectors vx, vy derived for the short description gloss extracted from
the English Wikipedia in Section 2.2 and the gloss and related terms provided by
WordNet, respectively. The vectors are created using TF-IDF scores after stem-
ming using Porter’s method.

Primary Sense Heuristic. This feature is computed by taking the set of unqualified
English titles for the Wikipedia entity x or any of its redirects, and then counting
for how many of them the WordNet synset y is listed as the primary noun sense in
WordNet. A Wikipedia title like ‘College’ is considered unqualified if it does not
include an additional qualification in parentheses, unlike ‘College (canon law)’. The
most frequent sense of ‘college’ listed in WordNet is much more likely to correspond
to Wikipedia’s ‘College’ article than to pages with additional qualifications like
‘College (canon law)’ or ‘College (1927 film)’. Unqualified titles reflect the most
important meaning of words as chosen by Wikipedia editors, and thus are more
likely to correspond to the first sense of those words listed in WordNet.

Supervised Model. Together, these three signals allow us to learn a regression
model that assesses whether a Wikipedia article and a WordNet synset are likely
to match. The contribution of the three signals may vary from case to case. For
some articles, we may find an English redirect title that matches a WordNet synset
as well a Spanish title that matches the equivalent synset in the Spanish WordNet.
In other cases, only the English title may match but we might additionally see that
this English title’s first sense is precisely the WordNet synset we are considering
and that additionally the WordNet synset’s gloss has a high cosine similarity with
the gloss extracted from the article. Note that these rich signals provide more
information than is normally available when performing conventional word sense
disambiguation for words occurring in a text.
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3.1.4 Redirect Matching

Many projects treat redirect titles in Wikipedia as simple alias names of an entity.
However, the meanings of many redirect titles differ significantly from those of their
respective redirect target pages. For instance, there are redirects from Physicist

(i.e. human beings) to Physics (a branch of science) and from God does not play

dice to Albert Einstein. Large numbers of redirects exist from song names to
album names or artist names, and so on. We decided to conservatively equate
redirects with their targets only in the following two cases.

1. The titles of redirect source and redirect target match after parenthesized
substring removal, Unicode NFKD normalization [22], diacritics and punctu-
ation removal, and lower-case conversion. Hence London would match London

(England) and LONDON, but not Southwest London or Climate of London.

2. The redirect uses certain templates or categories that explicitly indicate co-
reference with the target (alternative names, abbreviations, etc.).

Other redirects still have a chance of being connected to their targets later on, by
the methods described in Section 4.1.

3.1.5 Infobox Matching

This linking function returns a constant w > 0 when an infobox template like
Infobox university is matched with an article or category having a corresponding
title, in this case University, and 0.0 otherwise. We chose w = 0.5 because these
mappings are not as reliable as interwiki links or redirect links. The function does
not consider article titles with additional qualifications as matching, so University

(album) would not be considered.

3.2 Subclass Link Heuristics

Subclass linking functions use simple heuristics to connect a class x to its potential
parent classes y.

3.2.1 Parent Categories

The parent category linking function checks if entities x for Wikipedia categories
can be considered subclasses in the ontological sense of entities y for their own
parent categories as listed in Wikipedia.

To accomplish this, it ensures that both x and y are likely to be categories
denoting genuine classes. A genuine class like Universities can have instances
as its class members (individual universities, ontologically speaking, are regarded
as instances of Universities). In contrast, other categories like Education or
Science education merely serve as topic labels. It would be wrong to say that
the University of Trento “is an” Education. For distinguishing the two cases au-
tomatically, we found that the following heuristic generalizes the singular/plural
heuristic proposed for YAGO [76] to the multilingual case:

– headword nouns that are countable (can have a plural form) tend to indicate
genuine classes
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– headword nouns that are uncountable (exist only in singular form) tend to be
topic tags

Hence, we take the titles of a category as well as its cross-lingual counterparts,
remove qualifications in parentheses, and, if available, rely on a parser to retain
only the main headword. In practice, we exclusively use the English Link Grammar
parser [71]. For large numbers of non-English categories, it suffices to work with
the entire string after removing qualifications, e.g. the German Wikipedia uses
titles like Hochschullehrer (Berlin) rather than titles like German academics. In
most other cases, the Markov Chain Taxonomy Induction algorithm will succeed
at ensuring that taxonomic links are nevertheless induced. We then check that
whatever term remains is given in plural (for English), or is countable (in the
general case). Countability information is extracted from WordNet and Wiktionary
(wiktionary.org), the latter using regular expressions. We also added a small list
of Wikipedia-specific exceptions (words like ‘articles’, ‘stubs’) that are excluded
from consideration as classes.

The linking function returns 1 if y is a parent category of x and both x and y
are likely to be genuine classes, and 0 otherwise.

3.2.2 Category-WordNet Subclass Relationships

If x is a category, then the headword of its title also provides a clue as to what
parent classes are likely in the input wordnets. For instance, a category like
University book publishers has ‘publishers’ as a headword. While we need the
headword to be covered by the input wordnets, it suffices to use the English Word-
Net and perhaps a few other ones. As we will later see, even if one were to use
only Princeton WordNet, the Markov Chain Taxonomy Induction algorithm could
easily integrate most categories, because the majority of non-English categories
will have equals arcs to English categories or subclass links ultimately leading
to an article or category that is connected to WordNet.

We again relied on supervised learning to disambiguate possible meanings of a
word, as earlier employing Ridge Regression [11] to learn a model that recognizes
likely entities based on a labelled training set (see Section 6.2.2). The main features
are again of the form∑

tx∈terms(x)

max
ty∈terms(y)

φx(tx, x) φy(ty, y) simhw(tx, ty) (2)

This is similar to Equation 1, however simhw(tx, ty) matches with headwords of
titles tx rather than full titles tx if such information is available. As for the sub-

class links, qualifications in parentheses are removed, and then the Link Grammar
parser is used to retain only the headword [71] if possible. Additionally, φx(tx, x)
will be 1 if tx is in plural or countable and 0 otherwise, allowing us to distin-
guish topic labels from genuine classes. The second weighting function φy(ty, b)
again uses the number of alternative meanings as well as synset rank and corpus
frequency information. Apart from this, the linking also relies on the cosine simi-
larity feature used earlier for equals. Together, these features allow the model to
disambiguate between relevant WordNet synsets. A few exceptions are specified
manually, e.g. ‘capital ’, ‘single’, ‘physics’, ‘arts’, and Wikipedia-specific ones like
‘articles’, ‘pages’, ‘templates’.
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3.2.3 WordNet Hypernymy

WordNet’s notion of hypernymy between synsets is closely related to the sub-

class relation. The WordNet hypernymy linking function hence returns 1 if y is
a hypernym of x in WordNet, and 0 otherwise.

3.3 Instance Link Heuristics

Instance linking functions link individual entities to their classes.

3.3.1 Infoboxes

A University infobox placed in a Wikipedia article is a very strong indicator of the
article being about a university. The instance linking function returns a constant
winfobox > 0 if y is recognized as an infobox template that occurred on the page
of the article associated with x, and 0 otherwise. Since infoboxes are incorporated
into Wikipedia articles by means of simple template invocations, heuristics need
to be used to distinguish them from other sorts of template invocations. For this,
we rely on a list of suffixes and prefixes (like “ Infobox”) for different languages.
The instance links generated by this linking function are useful later on, because
we will also have equals links between infobox templates and articles, as described
in Section 3.1.

3.3.2 Categories

Entities for articles like Free University of Bozen-Bolzano are made instances
of certain categories, e.g. Universities in Italy, but not of topic categories like
Bolzano. If y is a Wikipedia category for the article associated with x, the category
linking function assesses whether a headword of y (or of its interwiki translations)
is in plural or countable, and returns 1 if this is the case, and 0 otherwise, as earlier
for subclass relations.

We will now explain what these linking functions give us and what needs to
be done in order to obtain a more coherent output knowledge base.

4 Taxonomy Induction

Applying the linking functions to the input as in Algorithm 3.1, we obtain a graph
G0 = (V0, A0, Σ) with an extended arc set A0 connecting entities from multiple
knowledge sources to each other, in our case articles, categories, infoboxes (from
different editions of Wikipedia), as well as WordNet entities. As shown in Figure
2, the connections include equals statements (red bidirectional arrows) represent-
ing equivalence, subclass statements connecting categories and WordNet entities
to parent classes, and instance statements connecting articles to categories and
infoboxes (both depicted as blue unidirectional arrows).

However, due to the noisy heuristic nature of these arcs and the fact that these
entities come from different sources, it is not trivial to recognize that ‘Fersental ’
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Fig. 2: Simplified illustration of noisy input from heuristics, including equals (red
bidirectional arrows) and instance/subclass links (blue unidirectional arrows)

Fig. 3: Relevant sample of the desired output

is a valley rather than a language. In fact, in reality, we may have more than
50 languages and many more potential parents for an entity. What is needed is
a way to aggregate information and produce the final, much cleaner and more
coherent knowledge base, which would ideally include what is depicted in Figure
3. We proceed in three steps. The first step aggregates entity identifiers referring
to the same entity by producing consistent equivalence classes. In the second step,
taxonomic information from different linking functions is aggregated to produce a
clean taxonomy. A final step filters this taxonomy to make it even more consistent.
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Fig. 4: Connected component with inaccurate links (simplified)

4.1 Consistency of Equivalence Information

There will often be multiple entity identifiers that refer to the same entity and
that are connected by equals statements. For instance, the German Fersental is
equivalent to the corresponding Italian, Norwegian, and other articles about the
valley. It will sometimes be convenient to jointly refer to all of these equivalents.

To make the knowledge base more coherent, one key ingredient is taking into
account the symmetry and transitivity of equivalence. In practice, we may have
an infobox in some non-English edition with an equals arc to an article, which
has an equals arc to a category, which in turn has an interwiki link to an English
category, and so on.

This leads us to the following definition to capture the weakly connected com-
ponents corresponding to the symmetric, transitive closure of equals.

Definition 4 (e-component) In a knowledge base G = (V,A,Σ), an e-component
E ⊆ V for some entity v0 ∈ V is a minimal set of entities containing v0 such that
v ∈ E for all u ∈ E, v ∈ V with statements (u, v, r, w) ∈ A or (v, u, r, w) ∈ A
(with r = equals, w > 0). We use the notation E(v0) to denote the e-component
containing a node v0.

Due to the heuristic nature of the equality linking functions, it often occurs that
two entities u, v are transitively identified within an e-component, although we
are quite sure that they should not be. For instance, we may have two different
Wikipedia articles linked to the same WordNet synset. In some cases, the input
from Wikipedia is imprecise, e.g. the Catalan article about the city of Bali in
Rajasthan, India, as of February 2011, is linked to the Hindi article about the
Indonesian island of Bali.

Figure 4 shows a connected component that conflates multiple different enti-
ties. The Latin Wikipedia’s Tridentum refers to the city of Trento, which is distinct
from the larger Trentino (also known as the Province of Trento). Finally, Trentino-
Alto Adige/Südtirol refers to an even larger autonomous region that includes not
only Trentino but also South Tyrol (also known as Alto Adige, or the Province
of Bolzano-Bozen). In the figure, we see that these entities are not clearly sep-
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arated. Among other things, we would like to state that Trentino-South Tyrol

and Trentino-Alto Adige/Südtirol are distinct from Trentino and Province

of Trento (perhaps remaining agnostic about whether Trentino and Province

of Trento are distinct or not). In general, we may have several sets of entities
Di,1, . . . , Di,li , for which we assume that any two entities u,v from different sets
are pairwise distinct with some degree of confidence or weight. In our example,
Di,1 = {Trentino-South Tyrol,Trentino-Alto Adige/Südtirol} would be one
set, and Di,2 = {Trentino, Province of Trento} would be another set. Formally,
we can make the following definition.

Definition 5 (Distinctness Assertions) Given a set of nodes V , a distinctness
assertion is a collection Di = (Di,1, . . . , Di,li) of pairwise disjoint (i.e. Di,j∩Di,k =
∅ for j 6= k) subsets Di,j ⊂ V that expresses that any two nodes u ∈ Di,j , v ∈ Di,k

from different subsets (j 6= k) are asserted to be distinct from each other with some
weight w(Di) ∈ R.

We found that many inconsistent e-components can be identified automatically
with the following distinctness assertions. Among other things, they discourage
articles from the same Wikipedia from being merged, multiple WordNet synsets
from being merged, and disambiguation pages from being mixed up with regular
articles.

Criterion 1 (Distinctness between articles from the same Wikipedia edition) For
each language-specific edition of Wikipedia, a separate assertion (Di,1, Di,2, . . . )
can be made, where each Di,j contains an individual article together with its
respective redirection pages. Two articles from the same Wikipedia very likely
describe distinct concepts unless they are redirects of each other. For example,
‘Georgia (country)’ is distinct from ‘Georgia (U.S. State)’. Additionally, there are
also redirects that are clearly marked by a category or template as involving topic
drift, e.g. redirects from songs to albums or artists, from products to companies,
etc. We keep such redirects in a Di,j distinct from the one of their redirect targets.

Criterion 2 (Distinctness between categories from the same Wikipedia edition)
For each language-specific edition of Wikipedia, a separate assertion (Di,1, Di,2, . . . )
is made, where each Di,j contains a category page together with any redirects. For
instance, ‘Category:Writers’ is distinct from ‘Category:Writing ’.

Criterion 3 (Distinctness for links with anchor identifiers) The English ‘Division
by zero’, for instance, links to the German ‘Null#Division’. The latter is only a part
of a larger article about the number zero in general, so we can make a distinctness
assertion to separate ‘Division by zero’ from ‘Null ’. In general, for each interwiki
link or redirection with an anchor identifier, we add an assertion (Di,1, Di,2) where
Di,1,Di,2 represent the respective articles without anchor identifiers.

Criterion 4 (Distinctness of WordNet Synsets) We assume that WordNet does
not contain any duplicate synsets and add a distinctness assertion (Di,1, Di,2,
. . . ), consisting of a singleton set Di,j = {v} for each entity v from WordNet.

Criterion 5 (Distinctness from Disambiguation Pages) We add an assertion (Di,1,
Di,2) where Di,1 contains all articles recognized as disambiguation pages, and
Di,2 contains all articles not recognized as disambiguation pages. In Wikipedia,
disambiguation pages are special pages that provide a list of available articles for
ambiguous titles.
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The criteria mentioned above are used to instantiate distinctness assertions for
e-components. The assertion weights are tunable; the simplest choice is using a
uniform weight for all assertions (note that these weights are different from the
edge weights in the graph). We will revisit this issue in our experiments.

Note that we could also have chosen not to remain that faithful to WordNet
and only enforce distinctness between different branches of entities within Word-
Net, e.g. (Di,1, Di,2) where Di,1 contains all abstract entities in WordNet and
Di,2 contains all physical entities in WordNet. Since we are aiming at a more
precise upper-level ontology, we decided to maintain WordNet’s fine-grained sense
distinctions.

Algorithm. To reconcile the equals arcs with the distinctness information, we
often need to remove edges, or alternatively we may choose to ignore certain dis-
tinctness information. Separating two entities while removing a minimal (weighted)
number of edges corresponds to computing minimal graph cuts. Unfortunately, we
often have multiple pairs that simultaneously need to be separated, which is NP-
hard and APX-hard. To cope with this, we first apply generic graph partitioning
heuristics [24] to break up very large sparsely connected components into individ-
ual, much more densely connected clusters. On each of these densely connected
clusters, we then apply a more accurate algorithm. We first solve a linear pro-
gram using CPLEX, which gives us an optimal fractional solution, and then use
a region growing technique that gives us a logarithmic approximation guarantee.
See our prior work [46] for details. In a few cases, the LP solver may time out, in
which case we resort to computing minimal s-t cuts [27] between individual pairs
of entities that should be separated. Minimal s-t cuts can be computed efficiently
in O(V E2) or O(V 2E) time. The statements corresponding to the cut edges are
removed, and hence we obtain small e-components that should no longer conflate
different concepts.

In a few rare cases, the LP solver may time out even for small partitions, in
which case we resort to computing minimal s-t cuts [27] between individual pairs
of entities that should be separated. Minimal s-t cuts can be computed efficiently
in O(V E2) or O(V 2E) time. The statements corresponding to the cut edges are
removed, and hence we obtain smaller e-components that should no longer conflate
different concepts.

4.2 Aggregated Ranking

4.2.1 Requirements

Having made the equals arcs consistent, we then proceed to build the class hi-
erarchy. In order to create the final output taxonomy, we will reconsider which
entities to choose as superordinate taxonomic parents for a given entity. In doing
so, the following considerations will need to be acknowledged.

First of all, the taxonomic arcs provided as inputs in general are not all equally
reliable, as many of them originate from heuristic linking functions. The input arcs
are equipped with statements weights that indicate how much we can trust them.

Property 1 (Ranking) The output should be a ranked list of taxonomic parents
with corresponding scores rather than a simple set, based on the weights of the
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taxonomic arcs. All other things being equal, a taxonomic parent of an entity (that
is not in the same e-component) should receive a greater parent ranking score for
that entity if the weight of an incoming arc is higher.

Additionally, to obtain a clean, coherent output, it is crucial to obtain rankings
that take into consideration the fact that parents are not independent, but them-
selves can stand in relationships to each other. For example, two different versions
of Wikipedia may have what is essentially the same class (equals arcs) or classes
that are connected by means of subclass relationships (subclass arcs).

This is very important in practice, because we frequently observe that the input
arcs link individual articles to their categories, but these categories are language-
specific local ones that are not part of a shared multilingual class hierarchy. If
an article is found to be in the class Tal in Trentino-Südtirol in the German
Wikipedia, then the possible parent class Valley from WordNet, which is reachable
by following equals and subclass links, should gain further credibility.

The same consideration also applies to the node whose parents are currently
being considered. Clearly, when evaluating parents about a Malay Wikipedia arti-
cle, we may benefit from information available about an equivalent English article
entity, and vice versa.

Property 2 (Dependencies) A taxonomic arc from a node u to a node v with weight
greater than 0 should contribute to the ranking scores of nodes v′ that are reachable
from v via equals and subclass arcs. When evaluating parents for a node v0,
outgoing taxonomic arcs of nodes v′ that are reachable from v0 via equals arcs
should also contribute to the ranking.

Finally, it is fairly obvious that information coming from multiple sources is likely
to be more reliable and salient. For example, many Wikipedia editions describe
the Colorado River as a river, but only few declare it to be a border of Arizona.

Property 3 (Aggregation) If a parent node v is not in the same e-component as
the node v0 whose parents are being ranked, then, all other things being equal, v
should be given a higher ranking score with incoming taxonomic arcs (of weight
greater than 0) from multiple nodes than if v had incoming arcs from fewer of
those nodes.

4.2.2 Markov Chain

Taking these considerations into account, in particular Property 2, requires go-
ing beyond conventional rank aggregation algorithms. We use a Markov chain
approach that captures dependencies between nodes.

Definition 6 (Parent Nodes) Given a set of entities S and a target relation r
(subclass or instance), the set of parents P (S, r) is the set of all nodes vm that
are reachable from v0 ∈ S following paths of the form (v0, v1, . . . , vm) with
(vi, vi+1, ri, wi) ∈ A,wi > 0 for all 0 ≤ i < m, and specific ri. The path length m
may be 0 (i.e. the initial entity v0 is considered part of the parent entity set), and
may be limited for practical purposes. When producing subclass arcs as output
(r =subclass), all ri must be subclass or equals. When producing instance arcs
as output (r =instance), the first ri that is not equals must be an instance

relation, and any subsequent ri must be either equals or subclass.
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Definition 7 (Parent e-components) Instead of operating on original sets of par-
ent entities P (S, r), we consider the corresponding set of parent e-components
{E(v) | v ∈ P (S, r)} (see Definition 4), which consists of the e-components for all
v ∈ P (S, r).

For every node v0 in the input graph, we will retrieve the set of possible parents
and construct a Markov chain in which each state corresponds to a parent e-com-
ponent of v0. The Markov chain will enable us to create a ranking of those parents.

Definition 8 (Aggregated Weights) Given a source node v0 in a knowledge base
G = (V,A,Σ), a target relation r, and a corresponding set of parent e-components
{E0, . . . , En} (such that v0 ∈ E0), we define

wi,j =
∑
u∈Ei

∑
v∈Ej

∑
(u,v,r′,w)∈A

w

for all i,j from 0 to n, where r′ is instance if i = 0 and r=instance, and r′ is
subclass in all other cases (i.e. if i > 0 or r =subclass). We further define Γo(i)
as {j | wi,j > 0}.

If the target relation is subclass, this definition considers all subclass arcs
between parent e-components. If the target relation is instance, we need to dis-
tinguish between outgoing arcs from E0, which must be instance ones, and other
outgoing arcs, which must be subclass ones.

Definition 9 (Markov Chain) Given an entity v0, a corresponding set of parent
e-components {E0, . . . , En} (v0 ∈ E0), a weight matrix wi,j characterizing the
links between different Ei, and a weight c ∈ R+, we define a Markov chain (Ei0 ,
Ei1 , . . . ) as follows. The set {E0, . . . , En} serves as a finite state space S, an
initial state Ei0 ∈ S is chosen arbitrarily, and the transition matrix Q is defined
as follows.

Qi,j =



wi,j

c+
∑

k∈Γo(i)

wi,k
j 6= 0

c+ wi,j

c+
∑

k∈Γo(i)

wi,k
j = 0

(3)

Figure 5 illustrates a Markov chain defined in this way: Part (a) shows parent
e-components corresponding to states, (b) shows state transitions derived from
taxonomic arcs between nodes in e-components, and (c) shows how one can tran-
sition back to the source node E0, which contains Fersental, from any state.

Theorem 1 A transition matrix Q as defined in Definition 9 is stochastic.

Proof Given c > 0, for any i ∈ {0, . . . , n}, we obtain

n∑
j=0

Qi,j =
c+ wi,0

c+
∑

k∈Γo(i)

+
n∑

j=1

Qi,j

=

c+
n∑

j=0

wi,j

c+
n∑

k=0

wi,k

= 1.
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(a) Parent e-components as state space

(b) State transitions based on taxonomic links

(c) Additional state transitions to source node

Fig. 5: Markov chain setup
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The state space includes the e-component E0 containing the source node. The
probability mass received by E0 rather than by genuine parents Ei with i > 0 in
the stationary distribution reflects the extent of our uncertainty about the parents.
For instance, if all immediate parents of the source node are linked with very low
weights, then E0 will attract a high probability mass. In the definition, c is the
weight endowed to random restarts, i.e. transitions from arbitrary states back to
E0. Larger choices of c lead to a bias towards more immediate parents of E0,
while lower values work in favour of more general (and presumably more reliable)
parents at a higher level. It is easy to see that the Markov chain is irreducible and
aperiodic if c > 0, so a unique stationary distribution must exist in those cases.

Theorem 2 (Stationary Probability) The Markov chain possesses a unique sta-
tionary probability distribution π with π = πQ.

Proof For any state E ∈ S, there exists some node vm ∈ E that is reachable
from the source node v0 by following a path of statements with non-zero weights
as specified in Definition 6. The corresponding weights wi,j and state transition
probabilities Qi,j along the path must be non-zero. Hence, every state is reachable
from E0.

Since c > 0, we obtain a non-zero random restart probability Qi,0 > 0 for
every i, so from every state one can transition back to E0, and thus the chain is
irreducible. Additionally, since c > 0, the state E0 is aperiodic (one can remain
in E0 for any amount of steps), and hence the entire chain is aperiodic. By the
Fundamental Theorem of Markov chains, a unique stationary distribution exists.

4.2.3 Markov Chain Taxonomy Induction

This implies that we can use the stationary distribution of the Markov chain to
rank parents of a source node with respect to their connectedness to that source
node. The stationary distribution can easily be computed with the power iteration
method. Algorithm 4.1 captures the steps taken to induce the taxonomy.

Input. As input, it takes a graph G0 as defined in Section 2.1, containing informa-
tion from the original knowledge sources as well as noisy equals and taxonomic
statements, as produced by Algorithm 3.1. Additionally, one supplies the c param-
eter from Definition 9, an output selection function σ discussed below, parameters
ε, imax for the stationary probability computation, and the taxonomic root node
vR which is supposed to subsume all other classes (e.g. Entity).

Forming e-components. The algorithm begins by forming consistent e-components
from the output of the equivalence consistency algorithm described in Section 4.1.
These become the entities of the output knowledge base. In practice, one may
want to create entity identifier strings based on the entity identifiers within the e-
component, perhaps preferring article titles in a specific language. Non-taxonomic
statements like means statements that provide human-readable terms or state-
ments capturing factual knowledge like birth dates of people are directly mapped
to the e-components.
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Algorithm 4.1 Markov Chain Taxonomy Induction algorithm

1: procedure taxonomy(G0 = (V0, A0, Σ), c, σ, ε, imax, vR)
2: D0, . . . , Dk ← distinctness assertions for G0 . cf. Section 4.1
3: enforce consistency of G0, D0, . . . , Dk . cf. Section 4.1
4: V ← {E(v) | v ∈ V0} . consistent e-components become nodes
5: ΣT ← {equals, instance, subclass} . set of taxonomic relations
6: A← {(E(u), E(v), r, w) | (u, v, r, w) ∈ A0, r 6∈ ΣT} . map non-taxonomic statements
7: AT ← ∅
8: for all E in V do . for all e-components

9: r ←
{
subclass if E likely to be a class

instance otherwise
. see Section 3.2

10: E0 ← E
11: E1, . . . , En ← enumeration of {E(v) | v ∈ P (E, r)} \ {E}
12: . parent e-components as per Definition 7 in arbitrary order
13: Q← transition matrix for E using E0, . . . , En and c, r . as per Definition 9
14: π ← eigenvector(Q, ε, imax)
15: AT ← AT ∪ {(E,Ei, r, πi) | i > 0} . preliminary output

16: return cleaning(V,A0, AT, Σ ∪ΣT, vR) . final cleaning (Algorithm 4.2)

17: procedure eigenvector([Qi,j ]i,j=1,...,n, ε, imax)

18: choose uniform π with πi = 1
n

. initial distribution
19: i← 0
20: repeat . Power iteration method
21: π′ ← π
22: π ← Qπ
23: i← i+ 1
24: until ||π − π′||1 < ε or i ≥ imax

25: return π

Ranking. Then, for each e-component E, the heuristics described in Section 3.2 are
used to assess whether E is likely to be a class (checking headwords for Wikipedia
and assuming yes for WordNet synsets without outgoing instance arcs). In ac-
cordance with the outcome of this assessment, the parents are retrieved and the
transition matrix Q for the Markov chain is constructed. The fixed point π = πQ
can be computed using a number of different algorithms, e.g. the well-known power
iteration method. Although this process needs to be repeated for all e-components,
these steps are nevertheless not a bottleneck (see Section 5).

The output knowledge base is generated from this ranking using an additional
cleaning algorithm, described below in Section 4.2.5.

4.2.4 Analysis.

Given a knowledge graph G = (V0, A0, Σ) stored in a data structure that allows
lookups in both directions of a directed arc, e-components can be found in linear
time, i.e. O(|V0| + |A0|), by iterating over the nodes and starting a depth-first
search whenever an unseen node is encountered. Due to the overall sparsity of the
graph with respect to equals arcs, the runtime will tend to be close to O(|V0|).
Subsequently, for each E ∈ V , the same strategy can be used to retrieve the set
of parent e-components, and the weights wi,j can be computed on the fly while
doing this. Computing the Markov chain’s transition matrix Q can take O(|V |2)
steps, and approximating the stationary distribution requires O(|V |2) operations
if the power iteration method is used with a constant imax. This means that with
these implementation choices, the overall worst-case complexity of the algorithm is
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O(|V0|3). In practice, the set of parent e-components will be small, and additionally
the transition matrices will be sparse, so the algorithm runs fairly quickly, as we
show in Section 6.

Theorem 3 The Markov Chain Taxonomy Induction algorithm possesses proper-
ties 1, 2, and 3, if c > 0.

Proof Definition 8 implies that, all other things being equal, a higher weight for a
taxonomic arc from some u ∈ Ei to a parent v ∈ Ej will lead to a higher weight
wi,j . We know that c > 0 and additionally assume v 6∈ E0 (i.e. j 6= 0). Then, by
Definition 9, Qi,j will increase (and at least Qi,0 will decrease). Additionally, from
the proof of Theorem 2, we know that Q is aperiodic and irreducible and hence
regular. Due to the monotonicity of the stationary distribution of regular Markov
chains [20], the e-component including v will have a greater probability mass in
the new distribution, and Property 1 is fulfilled.

Similarly, given a node v′ reachable from another node v via equals and sub-

class arcs, the state E(v′) must be reachable from E(v) with non-zero probability,
so any taxonomic arc from a node u to v also contributes to the ranking of v′.
When evaluating parents for v0, nodes v′ that are reachable from v0 via equals

arcs are also in E0 = E(v0), so outgoing taxonomic arcs of v′ contribute to the
ranking, and Property 2 is fulfilled.

Finally, Definition 8 implies that, all other things being equal, a parent v ∈ Ej

with input arcs from multiple children will have a higher sum of incoming weights∑
i wi,j than the same parent if it had fewer of those incoming arcs. With c > 0

and assuming j 6= 0, this also implies a higher
∑

iQi,j . The monotonicity of the
stationary distribution [20] then implies that Property 3 is satisfied.

With these properties, Markov Chain Taxonomy Induction allows us to aggre-
gate link information from heterogeneous sources, e.g. from multiple editions of
Wikipedia, including category and infobox information, and from WordNet. The
output is a much more coherent taxonomic knowledge base, similar to the example
excerpt in Figure 3, where clean e-components have been merged, and taxonomic
links have been aggregated and cleaned. Still, additional cleaning can be performed
to obtain an even more consistent taxonomy.

4.2.5 Taxonomy Cleaning

The final clean output taxonomy is generated using Algorithm 4.2 as follows.

– First of all, a selection function σ filters the preliminary output AT with respect
to application-specific criteria. Usually, this involves enforcing some minimal
weight threshold and selecting the top k parent e-components E′ for a given
entity E. A choice of k = 1 produces a more traditional taxonomy, while
higher k lead to more comprehensive knowledge bases. Other filtering criteria
are possible as well, e.g. retaining only parents with Chinese labels or keeping
only WordNet synsets as parents.

– In a similar vein, entities that are not connected to the taxonomic root node
E(vR) (e.g. vR = Entity) by paths of taxonomic links can be pruned away
(the prune procedure), together with their correspondings statements. This
leads to an even more coherent knowledge base. Alternatively, these entities
could also be made direct children of E(vR).
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– The next step involves removing cycles of subclass relationships. A cycle
of formal subsumptions implies that all entities in the cycle are equivalent.
Since we have already merged nodes assumed to be equivalent into e-compo-
nents, it makes sense to break up such cycles. Cycles can be found in O(|V |+
|A|) steps by determining strongly connected components [80]. SCC(V,A) is
assumed to provide the set of (non-singleton) strongly connected components
C ∈ SCC(V,A) with respect to subclass links, where each C is represented as
a non-empty set of arcs. The algorithm repeatedly removes the lowest-weighted
subclass arcs, until no strongly connected components and hence no cycles
remain.

– Finally, whenever there is an arc to a parent that is also a higher-order parent,
we remove the redundant direct arc to the parent. Formally, this corresponds
to computing the smallest graph TR(V,AT) that still has the same closure
as (V,AT) with respect to subclass and instance. In the worst case, such
transitive reductions may require O(|V | |AT|) steps [3], but in practice only a
small subset of all nodes serve as parents. This concludes the construction of
the final output taxonomy.

Algorithm 4.2 Taxonomy cleaning algorithm

1: procedure cleaning(V,A0, AT, Σ)
2: AT ← σ(AT) . filtering by weight, top-k rank, etc.
3: V,A0, AT ← prune(E(vR), V, A0, AT) . remove unconnected branches
4: S ← SCC(V,AT) . strongly connected components with respect to subclass
5: while S 6= ∅ do . remove cycles
6: choose C from S
7: a← argmin

a∈C
w(a) . select lowest-weighted subclass arc

8: AT ← AT \ {a} . remove a
9: S ← (S \ {C}) ∪ SCC(V,C \ {a})

10: AT ← TR(V,AT) . transitive reduction with respect to instance, subclass
11: return G = (V,A0 ∪AT, Σ) . taxonomic knowledge base as output

5 System Architecture

System. In order to build MENTA, we developed a platform-independent knowl-
edge base processing framework. For efficiency reasons, the weighted labelled multi-
digraphs were stored in custom binary format databases, where we could encode
arc labels and weights very compactly. Each entity has an entry in a heavily cached
index, with an expected O(1) look-up time. The entry contains pointers into a large
disk-based data file that stores a binary-encoded list of outgoing edges. The num-
ber of pointers can be as high as the number of outgoing edges in the worst case,
but is only 1 if the data store has been defragmented. The linking heuristics are
implemented as functions that assess links between two entities and produce new
weights for potential arcs.

Algorithm Implementation. The Markov Chain Taxonomy Induction algorithm is
used to process the original noisy subclass and instance arcs that are provided as
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input. In order to increase the speed, we limited the maximal parent path length in
Definition 6 to m = 4. This means that thousands of states that would obtain near-
zero probabilities are pruned in advance. A second key to making the algorithm
run quickly is relying on the fact that many entities share common parents, so the
expensive lookups to determine potential parents should be cached. This allowed
us to process all 19.9 million e-components (see Section 6) in less than 3 hours on
a single 3GHz CPU.

Scalability Additionally, since the main loop in Algorithm 4.1 considers each source
e-component separately, parallelizing the processing is trivial. The source e-com-
ponents can be partitioned across multiple machines as well as across multiple pro-
cesses on each machine. No additional communication is required between them
for the Markov Chain ranking.

The pre-processing to create consistent e-components can also be parallelized
to a large extent, because each connected component can be processed separately,
and whenever a connected component is split into at least two parts, the indi-
vidual parts can again be processed on separate machines. Additionally, for each
individual part, one can also make use of the parallel processing capabilities of
recent versions of CPLEX.

User Interface for Lexical Database Queries. A simple Web-based user interface
has been implemented that allows users to look up words or names and browse
some of the multilingual lexical information available in the MENTA knowledge
base. Figure 6 provides a screenshot. It is clear that the way language users search
for information about words and their meanings has evolved significantly in recent
years. Users are increasingly turning to electronic resources to address their lexical
information needs because traditional print dictionaries and thesauri take more
time to consult and are less flexible with respect to their organization. Alphabetical
ordering, for instance, is not well-suited for conveying conceptual and taxonomic
relationships between words.

A lexical database like MENTA, in contrast, can simultaneously capture multi-
ple forms of organization and multiple facets of lexical knowledge. In our browsing
interface, for a given entity, a list of relevant information is provided, sorted by
category, salience and confidence. Especially with the advent of the World Wide
Web, users are increasingly expecting to be able to lookup words and choose be-
tween different types of information, perhaps navigating quickly from one concept
to another based on given links of interest. For example, a non-native speaker of
English looking up the word ‘tercel ’ might find it helpful to see pictures available
for the related terms ‘hawk ’ or ‘falcon’. The user can look up a German word
like ‘Tarifautonomie’, and, despite the lack of a corresponding English Wikipedia
article, use MENTA’s taxonomy to find out that it is a sort of judicial principle.

While there have been multilingual interfaces to WordNet-style lexical knowl-
edge in the past [64,5], these provide less than 10 languages as of 2012. The user
interface prototype developed for MENTA provides lexical information for more
than 200 languages and is available online at http://www.lexvo.org/uwn/.
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Fig. 6: User interface

6 Results

We now describe the experimental setup that led to the MENTA knowledge base,
as well as several extensions and case studies.

6.1 Input Dataset

We wrote a custom Web crawler that downloaded the latest Wikipedia XML
dumps from Wikimedia’s download site, retrieving 271 different editions of Wikipedia
as of April 2010. The size of the uncompressed XML dumps amounts to around
89.55 GB in total, out of which 25.4 GB stem from the English edition.

6.2 Output Analysis

We first analyse the results of the entity equality computation and then study the
quality of the taxonomic links, both before and after applying the Markov Chain
Taxonomy Induction, in order to demonstrate the contribution of the algorithm.
The resulting taxonomy is validated in terms of coherence, accuracy, and coverage.
The multilingual lexical knowledge in it is investigated as well.

6.2.1 Entity Equality

Equality Information. The linking functions provided 184.3 million directed inter-
wiki links and 7.1 million other directed equals arcs. The WordNet disambiguation
model was obtained by training on 200 out of 407 manually labelled examples, se-
lected randomly among all Wikipedia articles and WordNet synsets sharing a term
(increasing the training set size further does not significantly improve the results
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Fig. 7: Precision-recall curve for Wikipedia-WordNet links

because of genuinely hard to disambiguate cases). The precision-recall curve on
the remaining 207 examples used as the test set (Fig. 7) shows the remarkably
reliable results of the model. With a threshold of 0.5 we obtain 94.3% precision at
80.7% recall (F1: 87.0%). The precision only drops sharply once we move towards
recall levels significantly above 80%. The overall area under the ROC curve (ROC
AUC) is 93.06%.

Distinctness Information. The equality arcs led to 19.5 million initial e-compo-
nents, including templates, categories, and redirects. It turns out that roughly
150,000 of these e-components contained nodes to be separated, among them a
single large e-component consisting of nearly 1.9 million nodes. Overall, more than
5.0 million individual node pairs are asserted to be distinct by the distinctness
assertions.

Reconciliation. We applied the equivalence consistency framework from Section
4.1 to separate the entities and obtain more consistent links. As we did not imple-
ment any parallelization in our initial framework, the process took several days to
complete, with the expensive linear program solving by CPLEX (for the approxi-
mation algorithm) being the major bottleneck. We experimented with agglomera-
tive clustering as an alternative, but found the solutions to be orders of magnitude
less optimal in terms of the weights of deleted edges. Using the approximation al-
gorithm, a total of 2.3 million undirected equals connections (4.6 million directed
arcs) were removed, resulting in 19.9 million e-components after separation.

6.2.2 Taxonomy

Linking Functions. As additional input to the taxonomy induction algorithm, the
linking functions produced what correspond to 1.2 million subclass arcs and 20.1
million instance arcs between e-components. For the instance arcs, we chose
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winfobox = 2 because classes derived from infoboxes are more reliable than cate-
gories. The WordNet disambiguation model for subclass was obtained by training
on 1,539 random mappings, the majority of these (1,353) being negative exam-
ples. On a test set of 234 random mappings, we obtain a precision of 81.3% at
40.0% recall, however going above 40% recall, the precision drops sharply, e.g.
60.8% precision at 47.7% recall. This task is apparently more difficult than the
equals disambiguation, because less contextual information is directly available
in the category page markup and because our heuristics for detecting classes may
fail. Overall, there would be 6.1 million subclass arcs, but we applied a minimal
threshold weight of 0.4 to filter out the very unreliable ones. The ROC AUC is
only 65.8%. This shows that using the original linking functions alone can lead to
a taxonomy with many incorrect links.

Table 1: Ranked subclass examples

Class WordNet Parent Wikipedia Parent

Science museums 1. museum Museums
in New Mexico 2. science museum Science museum

3. depository Museums in
New Mexico

Cathedrals in 1. church building Cathedral
Belize 2. cathedral

(large church)
Churches in Belize

3. cathedral
(diocese church)

Church buildings

Hamsters 1. rodent Rodents
2. hamster Pets
3. mammal Domesticated animals

Table 2: Ranked instance examples

Entity WordNet Parent Wikipedia Parent

Fersental 1. valley Valleys
2. natural depression Valleys of Italy
3. geological formation Valleys of Trentino /

Alto Adige

Cagayan National 1. secondary school Secondary school
High School 2. school School

3. educational institution High schools in the
Philippines

The Spanish 1. book Book
Tragedy 2. publication British plays

3. piece of work Plays

Algorithm. We thus relied on our Markov Chain Taxonomy Induction algorithm
to choose reliable parents. In our experiments, the algorithm’s c parameter was
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Table 3: Coverage of individual entities by source Wikipedia

Instances Instances
Linked to
WordNet

Non-English
Instances

Linked to WN

English 3,109,029 3,004,137 N/A
German 911,287 882,425 361,717
French 868,864 833,626 268,693
Polish 626,798 579,702 159,505
Italian 614,524 594,403 161,922
Spanish 568,373 551,741 162,154
Japanese 544,084 519,153 241,534
Dutch 533,582 508,004 128,764
. . . . . . . . . . . .

Total 13,982,432 13,405,345 2,917,999
E-components 5,790,490 5,379,832 2,375,695

fixed at c = 1
2 , based on the intuition that if there is only one parent with weight

0.5, then that parent should be reached with probability 1
2 from the current state.

Examples of subclass and instance rankings are given in Tables 1 and 2, respec-
tively, showing the highest-ranked parent entities from WordNet and Wikipedia.
Note that in the final output, equivalent parents from WordNet and Wikipedia
would in most cases form a single e-component. They are listed separately here
for information purposes only.

Out of the 19.9 million e-components in the input, a large majority consist of
singleton redirects that were not connected to their redirect targets, due to our
careful treatment of redirect links in Section 3.1.

Coherence. For roughly 5.8 million e-components, we actually had outgoing inst-

ance links in the input. To quantify the coherence, we determine what fraction of
these e-components can be connected to e-components involving WordNet synsets,
as WordNet can be considered a shared upper-level core. Table 3 shows that this
succeeds for nearly all e-components. The first column lists the number of entities
for which we have outgoing instance arcs, while the second column is restricted
to those for which we could establish instance arcs to WordNet (at a reachability
probability threshold of 0.01). The small differences in counts between these two
columns indicate that most entities for which there is any class information at all
can be integrated into the upper-level backbone provided by WordNet. The third
column lists the number of e-components that are independent of the English
Wikipedia but have successfully been integrated by our algorithm with instance

links. While some fraction of those may correspond to entities for which cross-
lingual interwiki links need to be added to Wikipedia, large numbers are entities
of local interest without any matching English Wikipedia article. Additionally,
we found that 338,387 e-components were connected as subclasses of WordNet
synsets, out of a total of 360,476 e-components with outgoing subclass arcs.

Accuracy. Table 4 shows a manual assessment of highest-ranked WordNet-based
parent classes for over 100 random entities. The human assessor was shown the
name and gloss descriptions of the entity from Wikipedia as well as for the
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Table 4: Accuracy of subclass arcs to WordNet

top-k Sample
Size

Initial Arcs Ranked Arcs

1 104 82.46%± 7.08% 83.38%± 6.92%
2 196 57.51%± 6.85% 83.03%± 5.17%
3 264 45.89%± 5.97% 79.87%± 4.78%

WordNet-based class and asked to judge whether the entity is an instance of
the class (in the specific sense given by the gloss description). We rely on Wilson
score intervals at α = 0.05 to generalize our findings to the entire dataset. Wilson
score intervals characterize the confidence in a particular proportion. They are
much more accurate than standard normal approximations of binomial distribu-
tions (Wald intervals), especially when the distribution is skewed, and have been
recommended in several comparative studies and analyses [53,17]. For k = 2, 3,
the ranked output is significantly more reliable than the wi,j between e-compo-
nents resulting from the initial subclass arcs. The aggregation effect is even more
noticeable for the instance arcs to WordNet in Table 5. To connect instances to
WordNet, the algorithm needs to combine instance arcs with unreliable subclass

arcs. Yet, the output is significantly more accurate than the input subclass arcs,
for k = 1, 2, and 3. This means that the Markov chain succeeds at aggregating
evidence across different potential parents to select the most reliable ones.

We additionally asked speakers of 3 other languages to evaluate the top-ranked
WordNet synset for at least 100 randomly selected entities covered in the respec-
tive language, but without corresponding English articles. We see that non-English
entities are also connected to the shared upper-level ontology fairly reliably. The
main sources for errors seem to be topic categories that are interpreted as classes
and word sense disambiguation errors from the subclass linking function. Fortu-
nately, we observed that additional manually specified exceptions as in YAGO
[76] would lead to significant accuracy improvements with very little effort. Cer-
tain categories are very frequent and account for the majority of disambiguation
errors.

Table 5: Accuracy of instance arcs to WordNet

Language top-k Sample
Size

Wilson Score Interval

English 1 116 90.05%± 5.20%
English 2 229 86.72%± 4.31%
English 3 322 85.91%± 3.75%

Chinese 1 176 90.59%± 4.18%
German 1 168 90.15%± 4.36%
French 1 151 92.30%± 4.06%

Coverage. The total number of output e-components in MENTA is roughly 5.4
million excluding redirects (Table 3), so with respect to both the number of entities
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Table 6: Multilingual Wordnet (upper-level part of MENTA)

Language means
Statements in

MENTA

Distinct
Terms in
MENTA

Distinct
Terms in

UWN

Overall 845,210 837,627 822,212

French 036,093 035,699 033,423
Spanish 031,225 030,848 032,143
Portuguese 026,672 026,465 023,499
German 025,340 025,072 067,087
Russian 023,058 022,781 026,293
Dutch 022,921 022,687 030,154

and terms, MENTA is significantly larger than existing multilingual and mono-
lingual taxonomies relying only on the English Wikipedia, which as of February
2011 has around 3.6 million articles. For many of these entities, MENTA contains
additional supplementary information extracted from Wikipedia, including short
glosses in many different languages, geographical coordinates for countries, cities,
places, etc., and links to pictures, videos, and audio clips. For example, when
looking up ‘Mozart ’, pictures as well as audio clips are available.

6.2.3 Lexical Knowledge

After forming e-components, the upper-level part of MENTA can be considered
a multilingual version of WordNet. A total of 42,041 WordNet synsets have been
merged with corresponding Wikipedia articles or categories. We found that Word-
Net is extended with words and description glosses in 254 languages, although the
coverage varies significantly between languages. The average number of Wikipedia-
derived labels for these WordNet synsets is 20.

In Table 6, the results are compared with UWN [45], a multilingual wordnet
derived mainly from translation dictionaries. While MENTA’s coverage is lim-
ited to nouns, we see that MENTA covers comparable numbers of distinct terms.
The number of means statements is lower than for UWN, because each Wikipedia
article is only merged with a single synset. The precision of MENTA’s disambigua-
tion is 94.3%, which is significantly higher than the 85-90% of UWN. This is not
surprising, because an approach based on translation dictionaries has much less
contextual information available for disambiguation, while MENTA can make use
of Wikipedia’s rich content and link structure.

Additionally, MENTA’s output is richer, because we add not only words but
also have over 650,000 short description glosses in many different languages as
well as hundreds of thousands of links to media files and Web sites as additional
information for specific WordNet synsets. Gloss descriptions are not only useful
for users but are also important for word sense disambiguation [43]. Finally, of
course, our resource adds millions of additional instances in multiple languages, as
explained earlier.
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6.3 Extensions

6.3.1 Upper-Level Ontology

As mentioned earlier, the most generic part of an ontological taxonomy, i.e. the
part at the top of the hierarchy, is known as the upper-level ontology. In MENTA,
we have chosen to retain WordNet as an integral upper-level core.

Wikipedia as Upper Level. Alternatively, we may also create a more Wikipedia-
centric version where WordNet only serves as background knowledge to help us
connect different articles and categories and obtain a more coherent taxonomy. To
achieve this, it suffices to have the selection function σ in the algorithm choose only
e-components including Wikipedia articles or categories. This amounts to prun-
ing all e-components that consist only of WordNet synsets without corresponding
Wikipedia articles or categories. What we obtain is a taxonomy in which the root
node is based on the English article Entity and its equivalents in other languages.
At the upper-most level, the resulting taxonomy is shallower than with WordNet,
as many different classes like Organisms, Unit, Necessity, are directly linked to
Entity. At less abstract levels, the knowledge base becomes more complete. Tables
1 and 2 provide examples of top-ranked parent entities from Wikipedia.

Alternative Upper-Level Ontologies. In an additional experiment, we studied re-
placing WordNet’s lexically oriented upper-level ontology with the more axiomatic
one provided by SUMO [54]. SUMO’s expressive first-order (and higher-order) logic
axioms enable applications to draw conclusions with some kind of common sense,
capturing for example that humans cannot act before being born or that every
country has a capital. Extending this with more specific knowledge about entities
from Wikipedia can give rise to a fruitful symbiosis, because such axioms can then
be applied to individual entities.

We added SUMO’s class hierarchy as well as the publically available mappings
between WordNet and SUMO [55] as inputs to the instance ranking, and found
that SUMO can be extended with 3,036,146 instances if we accept those linked to
a SUMO class with a Markov chain stationary probability of at least 0.01. The
sampled accuracy of 177 highest-ranked (top-1) arcs was 87.9%±4.7%. The inaccu-
rate links often stemmed from mappings between WordNet and SUMO where the
SUMO term did not appear to reflect the word sense from WordNet particularly
adequately.

6.3.2 Large-Scale Domain-Specific Extensions

A salient feature of our approach is that we can easily tap on additional large-scale
knowledge sources in order to obtain even larger knowledge bases. For instance, we
can rely on the many domain-specific datasets in the Linked Data Web [12], which
describe biomedical entities, geographical objects, books and publications, music
releases, etc. In order to integrate them we merely need an equals linking function
for all individual entities and equals or subclass arcs for a typically very small
number of classes. Our entity aggregation from Section 4.1 will then ensure that
the links are consistent, and the Markov Chain Taxonomy Induction algorithm
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will choose the most appropriate classes, taking into account the weights of the
subclass arcs.

As a case study, we investigated a simple integration of the LinkedMDB dataset,
which describes movie-related entities. The equals links for instances were derived
from the existing DBpedia links provided with the dataset, which are available for
films and actors. Hence we only needed to specify two manual equals arcs for
these two classes to allow all corresponding entities to be integrated into MENTA.
We obtain additional information on 18,531 films and 11,774 actors already in
our knowledge base. Additionally, up to 78,636 new films and 48,383 new actors
are added. Similar extensions of MENTA are possible for many other domains by
relying on existing third-party datasets.

6.3.3 Information Extraction-Based Extensions

Another way of using our algorithm to extend knowledge bases is to rely on textual
sources. Pattern-based information extraction approaches are based on the idea of
searching a large document collection for strings matching specific textual patterns.
For example, the pattern ‘<X> such as <Y>’ has been found to work well for the
IsA relation: A matching word sequence like ‘. . . cities such as Paris . . . ’ allows
us to induce statements of the form (‘Paris ’,‘City ’,instance,w) [38].

Unfortunately, reyling on just a single pattern like the one above leads to very
few results. For instance, in a 20 million word New York Times article collection,
a well-known study by Hearst found only 46 facts [38]. So-called bootstrapping
techniques can be used to discover additional patterns automatically based on a
set of examples (e.g. [62]). However, this also tends to imply significantly noisier
extracted statements.

In such a situation, our algorithmic framework can serve to select more reliable
taxonomic parent words. For example, if ‘Paris’ has a number of unreliable par-
ents including ‘academy ’, ‘city ’, ‘club’, ‘town’, then the Markov Chain Taxonomy
Induction algorithm, given information about possible superordinate parents, may
help us to choose ‘municipality ’, which generalizes ‘city ’ and ‘town’.

Noise becomes even more of a problem if we wish to incorporate word sense
disambiguation in order to account for the fact that a parent like ‘server ’ could
refer to a waiter or to computing server, among other things. Again, our algorithm
can help to choose a single most likely parent for a given word.

We carried out an experiment using 200 textual patterns automatically derived
[79] from the Google N-Grams dataset [16] by bootstrapping using seeds from
ConceptNet [35]. The derived patterns were applied to the n-gram data to extract
large numbers of potential taxonomic facts.

This large set was pre-filtered by requiring that any fact be matched by at
least two reliable patterns. We used a set of 63 negative example seeds to filter out
unreliable patterns: Any pattern matching any of the negative examples was con-
sidered unreliable. This gave us 832, 840 instance statements for 30, 231 distinct
source words.

We compared two different methods to select suitable sense-disambiguated
parents in WordNet. The baseline method first determines the parents with the
highest weights for a given source word (after case normalization and stemming).
The weights were computed as exp(n−2), where n is the number of distinct reliable
patterns matched. For the highest-weighted parents, the method chooses the first
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noun senses as listed in WordNet as the output. This simple first sense heuristic is
known to be extremely competitive in word sense disambiguation tasks, because
the most frequent sense has a very high probability of being correct.

The alternative method was to rely on our Markov Chain Taxonomy Induction
algorithm. For each word, we created an input knowledge base consisting of the
source word and all of its immediate weighted parents, as above for the baseline.
Each parent t was then connected not only to its first noun sense in WordNet, but
to all noun senses s, with weight 1

rank(t,s) where rank(t, s) is the corresponding

synset rank (1 for the first noun sense, 2 for the second, and so on). WordNet’s
hypernym links were added for parents, but of course care was taken not to include
any information from WordNet about the source word itself. We ran our algorithm
with c = 1 and then chose the top-ranked WordNet sense.

A manual evaluation of random samples of the two outputs (excluding senses
chosen by both algorithms simultaneously) gave us the following results:

– First Sense Baseline:
24.88%± 5.53% precision (sample size: 229)

– Markov Chain Taxonomy Induction:
80.11%± 5.12% precision (sample size: 227)

The results clearly show that Markov Chain Taxonomy Induction succeeds in
choosing the right senses by aggregrating across individual inputs.

6.4 Non-Taxonomic Information

The taxonomic relations provide us with a global structure that connects all en-
tities in the knowledge base. Additionally, we can also include other relationships
between entities. First of all, Wikipedia’s category systems in different languages
can be used to obtain large numbers of hasCategory arcs, connecting entities like
College to topics like Education. Such information can be useful for word sense
disambiguation [18]. Earlier, we already mentioned that we can extract geograph-
ical coordinates and multimedia links from Wikipedia. Additionally, Wikipedia’s
infoboxes provide factual relationships between entities, e.g. the founding year and
location of universities, the authors of books, and the genres of musicians. Such
information can either be extracted from Wikipedia itself or from other databases
that are derived from Wikipedia [6,76].

6.5 Case Studies

6.5.1 Entity Search

Knowledge bases like MENTA are useful for semantic search applications. For
instance, the Bing Web search engine has relied on Freebase to provide explicit
lists of entities for queries like ‘Pablo Picasso artwork ’.

In Table 7, we compare the numbers of instances obtained as results from
the English Wikipedia with the numbers of instances provided by MENTA. The
Wikipedia column lists the number of articles belonging to a given category in the
English Wikipedia, while the MENTA columns list the number of e-components
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Table 7: Entity search query examples

Query Wikipedia MENTA
(English

Wikipedia)

MENTA
(All)

cities and towns in Italy 8,156 8,509 12,992
european newspapers 13 389 1,963
people 441,710 882,456 1,778,078
video games developed

in Japan
832 775 1,706

Table 8: Integrated non-English entities

Wikipedia Entity Top-Ranked Class
edition in WordNet

French Guillaume II bishop
(évêque de Meaux)

French Hansalim social movement
French Tropanol chemical compound

Chinese 王恩 person
Chinese 九巴士893 travel route
Chinese 东京梦华录 book

with outgoing instance arcs to the respective class e-components in MENTA’s
aggregated ranking (with a minimum stationary probability πi of 0.01). Even
if we consider only MENTA instances present in the English Wikipedia, i.e. e-
components that include English Wikipedia pages, we often find more instances
than directly given in the English Wikipedia, because our approach is able to
infer new parents of instances based on evidence in non-English editions. Table 8
provides examples of entities from non-English Wikipedia editions integrated into
the taxonomy.

Machine-readable knowledge bases allow for more advanced expert queries than
standard text keyword search. For instance, one could search for philosophers who
were also physicists, perhaps born in a specific time period and geographical area.

6.5.2 Fine-Grained Named Entity Recognition

Named entity recognition is a standard subtask in many natural language pro-
cessing systems, which aims at identifying mentions of entities in a text [50]. For
instance, a named entity recognition system may attempt to identify all people,
companies, organizations, and places mentioned in a stream of news articles.

Standard systems only distinguish between very high-level categories. Typi-
cally, these are: Persons, Locations, Organizations and Miscellaneous. MENTA
enables a much more fine-grained classification of entity names occurring in a
text. For instance, one can attempt to recognize all names of actors or names of
rivers mentioned in a text document.

To accomplish this, one feeds the text to a so-called Wikification system [39]
in order to detect and disambiguate entity mentions. Subsequently, one consults
MENTA to determine the relevant taxonomic classes of the encountered entities.
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The evaluation in Section 6.2.2 showed that top-ranked WordNet-level classes for
the named entities from Wikipedia have an accuracy around 85 to 90%.

6.5.3 Cross-Lingual Image Search

Since much of the content on the Web is written in English, retrieving images
based on English keywords usually works well. For instance, an English speaker
can easily retrieve images for the keyword ‘Mottled Duck ’, which refers to a specific
species of ducks. A Hungarian speaker searching for the equivalent Hungarian term
‘Floridai réce’ will find far fewer results.

MENTA can help here by providing images extracted from articles in other
language. For instance, as of April 2012, four images can be extracted from the
Swedish Wikipedia article for Mottled Ducks.

MENTA organizes all of these images in a taxonomic hierarchy with sense
distinctions. For example, for the keyword ‘tercel ’, Google’s Image Search shows
virtually only images of Toyota Tercel cars, but not images of the bird meaning
of ‘tercel ’. MENTA distinguishes ‘tercel ’ from ‘Toyota Tercel ’ by having separate
entries (entities) for them. Additionally, MENTA’s taxonomy allows providing the
user with pictures available for more general terms like ‘hawk ’ or sibling terms like
‘falcon’.

This means that MENTA with its WordNet-based taxonomy can serve as a re-
placement for the well-known image classification resource ImageNet [23]. MENTA
provides images with open-source-compatible licenses, while ImageNet consists of
copyrighted images from the Web and hence cannot be freely distributed.

6.5.4 Lexical Gaps in Machine Translations

Modern machine translation systems depend a lot on the amount of available data.
Traditional rule-based systems need translation lexicons that are large enough to
have entries for all the words that need to be translated and statistical machine
translation systems need huge parallel corpora covering the relevant words and
phrases in the input documents.

For the vast majority of language pairs, however, the amount of available data
of this particular form unfortunately remains very limited. Out-of-vocabulary er-
rors or words that are simply left untranslated are a frequent result. Google Trans-
late for instance, cannot properly translate the sentence ‘Occasionally there is
discussion about how the sackbut should be held ’ to languages like Portuguese or
Chinese, because ‘sackbut ’ is a rare word, referring to an early version of the
trombone musical instrument.

MENTA not only provides translations of ‘sackbut ’ to certain other languages
(including Portuguese), but also helps solve lexical gap issues by providing links
to superordinate terms in the taxonomy. In this case, MENTA reports that a
sackbut is a sort of trombone, and provides numerous words for trombones in many
different languages, including Chinese. With such knowledge, machine translation
systems can provide translations that are much closer to the original meaning than
the mistranslations that Google Translate currently provides.
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7 Related Work

We now provide an overview of related research efforts and explain how our ap-
proach differs from this previous work.

Mining Wikipedia. A number of projects have imported basic information from
Wikipedia, e.g. translations and categories [40,70], or simple facts like birth dates,
e.g. in Freebase [13]. Such resources lack the semantic integration of conflicting
information as well as the taxonomic backbone that is the focus of our work.

Apart from such facts, DBpedia [6] also provides an ontology, based on a set
of manually specified mappings from Wikipedia’s infobox templates to a coarse-
grained set of 260 classes. However, the majority of English articles do not have
any such infobox information, and non-English articles without English counter-
parts are mostly ignored. DBpedia additionally includes class information from
YAGO [76], a knowledge base that links entities from Wikipedia to an upper-
level ontology provided by WordNet. We adopted this idea of using WordNet as
background knowledge as well as some of the heuristics for creating instance and
subclass arcs. YAGO’s upper ontology is entirely monolingual, while in MENTA
the class hierarchy itself is also multilingual and additionally accommodates enti-
ties that are found in non-English Wikipedias. Furthermore, the class information
is simultaneously computed from multiple editions of Wikipedia. Nastase et al.
[51] exploit categories not only to derive isA relationships, but also to uncover
other types of relations, e.g. a category like ‘Universities in Milan’ also reveals
where a university is located.

Linking Heuristics. Numerous generic heuristics have been proposed to link equiv-
alent entities – Dorneles et al. provide a survey [25]. In general, any such heuristic
can be used to produce equivalence information serving as input to our taxonomy
induction algorithm.

Only a few other projects have proposed heuristics specifically optimized for
interlinking Wikipedia editions or linking Wikipedia to WordNet. Ponzetto et
al. [66,65] studied heuristics and strategies to link Wikipedia categories to parent
categories and to WordNet. Their results are significant, as they lead to a taxonomy
of classes based on the category system of the English Wikipedia, however they
did not study how to integrate individual entities (articles) into this taxonomy.

Recently, Navigli & Ponzetto [52] investigated matching English Wikipedia ar-
ticles with WordNet synsets by comparing the respective contextual information,
obtaining a precision of 81.9% at 77.5% recall. Wu & Weld [84] use parsing and
machine learning to link infobox templates to WordNet. The Named Entity Word-
Net project [82] attempts to link entities from Wikipedia as instances of roughly
900 WordNet synsets. Others examined heuristics to generate new cross-lingual
links between different editions of Wikipedia [57,74].

The focus in our work is on a suitable algorithmic framework to aggregate and
rank information delivered by such heuristics, and many of these heuristics could
in fact be used as additional inputs to our algorithm. The same holds for the large
body of work on information extraction to find taxonomic isA relationships in
text corpora [38,72,28,33,77], machine-readable dictionaries [49], or search engine
query logs [7]. Adar et al. [1] and Bouma et al. [15] studied how information from
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one Wikipedia’s infoboxes can be propagated to another edition’s articles, which
is distinct from the problem we are tackling.

Multilingual Knowledge Bases. Concerning multilingual knowledge bases in gen-
eral, previous results have been many orders of magnitude smaller in terms of
the number of entities covered [42,32], or lack an ontological class hierarchy [44].
EuroWordNet [83] provides multilingual labels for many general words like ‘uni-
versity ’, but lacks the millions of individual named entities (e.g. ‘Napa Valley ’
or ‘San Diego Zoo’) that Wikipedia provides. The largest comparable resources
are BabelNet [52] and WikiNet [51]. These were developed in parallel to MENTA
and also draw on Wikipedia, but have extracted other types of information rather
than aiming at integrating all Wikipedia editions into a single taxonomy. Fortu-
nately, Wikipedia-based identifiers can serve as a common ground to use all of
these resources simultaneously.

Taxonomy Induction Algorithms. Hierarchical agglomerative clustering has been
used to derive monolingual taxonomies [41], however clustering techniques will
often merge concepts based on semantic relatedness rather than specific ontological
relationships. Our work instead capitalizes on the fact that reasonably clean upper
ontologies already exist, so the main challenge is integrating the information into a
coherent whole. There are numerous studies on supervised learning of hierarchical
classifications [26], but such approaches would require reliable training data for
each of the several hundred thousand classes that we need to consider. Another
interesting alternative, proposed by Wu & Weld [84], is to rely on Markov Logic
Networks to jointly perform mappings between entities and derive a taxonomy.
Unfortunately, such techniques do not scale to the millions of entities we deal with
in our setting.

Snow et al. [73] proposed a monolingual taxonomy induction approach that
considers the evidence of coordinate terms when disambiguating. Their approach
assumes that evidence for any superordinate candidates is directly given as input,
while our approach addresses the question of how to produce evidence for superor-
dinate candidates based on evidence for subordinate candidates. For instance, very
weak evidence that Stratford-upon-Avon is either a village or perhaps a city may
suffice to infer that it is a populated place. Talukdar et al. [78] studied a random
walk technique to propagate class labels from seed instances to other coordinate
instances, but did not consider hierarchical dependencies between classes.

Taxonomic Data Integration. There has been a large amount of research on align-
ing two taxonomic resources [30]. On et al. [58] studied how to best group together
sets of equivalent entities, without however additionally taking into account ex-
plicit criteria for distinctness as our approach allows. Unfortunately, finding equiv-
alent items is only one of several steps when aiming at merging and integrating
taxonomies. In many cases, an item from one resource does not have any equivalent
in the other resource, but instead only a sub- or superordinate item.

A few systems have been developed that address this problem of merging in a
semi-automatic way, by requiring human experts to assist in merging the resources
[75,56]. Thau et al. [81] described an automatic algebraic framework for taxonomy
merging. This approach assumes that all input mappings are 100% correct, and the
output is formally equivalent to the union of both input taxonomies. In contrast,



Taxonomic Data Integration from Multilingual Wikipedia Editions 37

our own approach considers a very different scenario, allowing for links between
items to be weighted and in fact to be unreliable. Ponzetto & Navigli [65] proposed
a method to restructure a taxonomy based on its agreement with a more reliable
taxonomy (WordNet), but do not address how to integrate multiple taxonomies.
Raunich & Rahm [67] developed a system that integrates one ontology into another
by removing cycles and other redundant or irrelevant links.

None of these approaches aim at aggregating evidence from multiple sources
and producing a ranking based on the available evidence. Furthermore, none of
the above approaches address the intricate task of merging evidence from more
than just two input data sources, especially when there are millions of input links
connecting them in various ways.

Markov Chains. Our Markov Chain Taxonomy Induction algorithm is most sim-
ilar to PageRank with personalized random jump vectors [61,36]; however our
transition matrix is based on statement weights, and the probability for jumping
to a start node of a random walk depends on the weights of the alternative state-
ments rather than being uniform for all nodes. Uniform weights mean that single
parents are visited with very high probability even if they are only very weakly
connected, while in our approach such irrelevant parents will not obtain a high
transition probability. Other studies have relied on PageRank to find important
vocabulary in an ontology [85] and to perform word sense disambiguation [47].
Our Markov chain model differs from these in that we aim at identifying salient
parents for a specific node rather than generic random walk reachability proba-
bilities. We are not aware of any Markov chain-based approaches for constructing
class hierarchies.

8 Conclusion

We have presented techniques to relate entities from multiple knowledge sources
to each other in terms of a coherent taxonomic hierarchy. As a first step, this
involves using linking functions to connect individual nodes that are equivalent or
stand in a taxonomic relationship to each other. Subsequently, we use distinctness
heuristics and graph algorithms to clean up the equals links. Finally, a Markov
chain ranking algorithm is used to produce a much more coherent taxonomy while
taking into account arc weights, dependencies in terms of equals arcs, and higher-
order parents, among other things.

These methods were applied to the task of combining over 200 language-specific
editions of Wikipedia as well as WordNet into a single knowledge base, where we
succeeded in integrating 13.4 million out of 14.0 million possible articles from
different Wikipedia editions into the upper-level ontology. The result of this work
is MENTA, presumably the largest taxonomically organized multilingual lexical
knowledge base, which is freely available for download at http://www.mpi-inf.

mpg.de/yago-naga/menta/.

We believe that MENTA can support a number of semantic applications, which
leads to several opportunities for new research. For instance, all-words word sense
disambiguation using WordNet is well-studied but definitely not a solved problem
[2]. In particular, established systems have not been designed to support large
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numbers of named entities in conjunction with WordNet’s fine-grained sense dis-
tinctions. Additionally, many current systems need to be adapted to operate on
non-English text.

The entity search problem also needs to be studied further. Users may wish
to pose natural language queries like ‘What are the top-selling video games de-
veloped in Japan? ’ or ‘Which cities in France have mayors born in the 1930s? ’.
The required factual data from Wikipedia can be incorporated into MENTA, but
mapping natural language requests to knowledge base queries is non-trivial.

Further experiments could be carried out by applying our taxonomy induc-
tion in alternative settings. Apart from MENTA, we showed that our Markov
Chain Taxonomy Induction algorithm is flexible enough to work with an alterna-
tive upper-level ontology like SUMO, with additional knowledge from the Linked
Data Web, or with information extraction systems that collect named entities and
clues about their classes from text. Overall, this framework paves the way for
new knowledge bases that integrate many existing large-scale data sources while
offering more than the sum of the inputs.
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82. Toral, A., Muñoz, R., Monachini, M.: Named Entity WordNet. In: Proc. LREC. ELRA
(2008)

83. Vossen, P. (ed.): EuroWordNet: A Multilingual Database with Lexical Semantic Networks.
Springer (1998)

84. Wu, F., Weld, D.S.: Automatically refining the Wikipedia infobox ontology. In: Proc.
WWW. ACM (2008). DOI http://doi.acm.org/10.1145/1367497.1367583

85. Zhang, X., Li, H., Qu, Y.: Finding important vocabulary within ontology. In: Proc. ASWC
2006, LNCS, vol. 4185. Springer (2006)



42 Gerard de Melo, Gerhard Weikum

Author Biographies

Gerard de Melo is a Visiting Scholar at UC Berkeley working in
the Artificial Intelligence group of the International Computer Sci-
ence Institute (ICSI). Prior to that, he was a member of the Max
Planck Institute for Informatics and received his doctoral degree
from Saarland University with distinction in 2010. He has pub-
lished several award-winning papers on interdisciplinary research
spanning topics like web mining, natural language processing, data
integration, and graph algorithms. He also maintains the lexvo.org
site, which is used by many providers of Linked Data.

Gerhard Weikum is a Scientific Director at the Max Planck Insti-
tute for Informatics in Saarbrücken, Germany, where he is leading
the Databases and Information Systems department. Earlier he held
positions at Saarland University, ETH Zurich, and MCC in Austin,
Texas, and was a visiting senior researcher at Microsoft Research
Redmond. He co-authored a comprehensive textbook on transac-
tional systems, and has worked on distributed systems, self-tuning
database systems, DB&IR integration, and automatic knowledge
harvesting from Web and text sources. Gerhard Weikum is an ACM
Fellow and received the VLDB 10-Year Award. From 2003 through
2009 he was president of the VLDB Endowment.


