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Abstract Lexical databases following the wordnet paradigm capture information

about words, word senses, and their relationships. A large number of existing tools

and datasets are based on the original WordNet, so extending the landscape of

resources aligned with WordNet leads to great potential for interoperability and to

substantial synergies. Wordnets are being compiled for a considerable number of

languages, however most have yet to reach a comparable level of coverage. We

propose a method for automatically producing such resources for new languages

based on WordNet, and analyse the implications of this approach both from a

linguistic perspective as well as by considering natural language processing tasks.

Our approach takes advantage of the original WordNet in conjunction with trans-

lation dictionaries. A small set of training associations is used to learn a statistical

model for predicting associations between terms and senses. The associations are

represented using a variety of scores that take into account structural properties as

well as semantic relatedness and corpus frequency information. Although the

resulting wordnets are imperfect in terms of their quality and coverage of language-

specific phenomena, we show that they constitute a cheap and suitable alternative

for many applications, both for monolingual tasks as well as for cross-lingual

interoperability. Apart from analysing the resources directly, we conducted tests on

semantic relatedness assessment and cross-lingual text classification with very

promising results.
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1 Introduction

Lexical databases are indispensable for many natural language processing tasks.

WordNet (Fellbaum 1998) is the most well-known and most widely used lexical

database for English language processing, and is the fruit of over 20 years of

manual work carried out at Princeton University. A large number of existing tools

and datasets are based on WordNet, so extending the landscape of resources aligned

with WordNet leads to great potential for interoperability and to substantial

synergies. The original WordNet for the English language inspired endeavours to

create similarly structured resources (‘‘wordnets’’) for other languages, e.g. in the

context of the EuroWordNet EU project (Vossen 1998), the BalkaNet project (Tufiş

et al. 2004), as well as under the auspices of the Global WordNet Association.

Nevertheless, we contend that despite several decades of work on such resources,

there is still a great need for additional research into more efficient means of

producing them. Consider, for instance, that there are about 7,000 living languages,

but only around 50 for which wordnet versions have been created, many indeed still

in a preliminary stage with very low coverage, and only about a handful of

languages with wordnet versions that are freely downloadable from the Internet.

Furthermore, several existing wordnets unfortunately form completely independent

networks that are not connected to and hence not interoperable with other wordnets.

The main bottleneck is the laborious compilation process, which requires skilled

experts to work on such a resource for several years. In order to complement the

existing manually compiled wordnets, we thus propose a new approach to

constructing wordnets that trades off accuracy for a much faster compilation

process, and hence frequently leads to more terms being covered than in existing

wordnets. Our approach is based on learning classifications, and therefore is

completely automatic once an initial set of training associations is provided. The

fact that the wordnets are aligned with the original Princeton WordNet greatly

facilitates interoperability with existing wordnets (e.g. English-language glosses are

available) as well as many additional resources such as ontologies and mappings, as

detailed in Sect. 2.

Certainly, the resulting wordnets will not have the same level of accuracy as

resources carefully constructed by skilled lexicographers, however they can (1)

serve as a valuable starting point for creating more accurate ones, and (2) be used

immediately in many natural language processing tasks where coverage is more

important than perfect accuracy, as will later be demonstrated in Sect. 6.

The remainder of this article is organized as follows. Section 2 begins with a brief

introduction to wordnets and their role for interoperability. After a brief summary of

alternative compilation techniques in Sect. 3, the main focus of this article will be a

thorough description of an automatic statistical approach to constructing wordnets

in Sect. 4. The implications of using such an approach as well as evaluation results

are studied in great detail in Sect. 5. Section 6 considers possible applications of

automatically built wordnets, discussing human use as well as experimental results

on natural language processing tasks such as semantic relatedness and cross-lingual

text classification. Finally, concluding remarks are provided in Sect. 7.
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2 Wordnets and their role for interoperability

We will begin by introducing Princeton WordNet, the original wordnet that inspired

all successors, as well as by discussing the role of wordnets for interoperability.

2.1 Princeton WordNet

Princeton WordNet (Fellbaum 1998) is a lexical database for the English language

that captures information about how words and word senses in the English language

are related. It lists the senses that a word can assume and identifies senses that are

synonymous in meaning as semantic units called synsets. Terms and synsets are

organized as a network of nodes linked by various lexico-semantic relations.

The hyponymy relation can be defined as one that ‘‘holds between a more

specific, or subordinate, lexeme and a more general, or superordinate, lexeme, as

exemplified by such pairs as ‘cow’:‘animal’, ‘rose’:‘flower’’’ (Lyons 1977).

Hypernymy is the respective inverse relation. In WordNet, these are captured as

relations between word senses. The antonymy relation represents semantic

opposition between terms. Other relations include instance relationships and several

kinds of meronymic relations.

2.2 Wordnets and interoperability

There is a significant amount of ongoing work on standards that will facilitate

interoperability for language resources and natural processing applications. Apart

from agreeing on common data formats, an important challenge is the establishment

of shared identifiers that allow us to unambiguously refer to linguistic phenomena.

Examples include the ISO 639 standards for language codes and the development of

the ISO Data Category Registry to provide labels for parts of speech, syntactic

constituency, etc. (Francopoulo et al. 2008).

At the same time, there is also an increasing need to refer to word senses in an

unambiguous way, e.g. in translation resources. We believe that WordNet qualifies

as a suitable starting point for developing a multilingual sense inventory. Wordnets

in several languages are already connected to the original one. Geographical

information (Buscaldi and Rosso 2008) and pictures (Deng et al. 2009) are available

for many sense identifiers listed in WordNet. Other resources linked to WordNet

include topical domain labels (Bentivogli et al. 2004), verb lexicons such as

VerbNet (Kipper et al. 2000) and FrameNet (Baker and Fellbaum 2008), and

ontologies like SUMO (Niles and Pease 2003), YAGO (Suchanek et al. 2007),

DOLCE (Gangemi et al. 2003), and OpenCyc (Cycorp Inc. 2008). Via YAGO,

WordNet is also connected to Wikipedia and many other datasets in the Linked Data

Web (Bizer et al. 2009).

By building new wordnets that are aligned with the English WordNet, we can not

only contribute to this infrastructure and increase its value, but also benefit from it

when deploying the new wordnets for natural language processing.
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3 Previous work on building wordnets automatically

Prior to introducing our statistical approach to constructing wordnets, we will

summarize some of the previous means of creating wordnets.

One general strategy is the so-called merge model, where an existing thesaurus is

converted to a wordnet-like format and then semi-automatically linked to other

wordnets or to an interlingual synset index. The downside of this strategy is that it

cannot be applied to a large range of languages, unless some pre-existing wordnet-

like thesaurus for each of these languages is found or established.

An alternative general strategy is the expand model, which requires much fewer

pre-existing resources. The general approach is as follows: (1) Take an existing

wordnet for some language L0, usually Princeton WordNet for English. (2) For each

sense s listed by the wordnet, translate the terms associated with s from L0 to a new

language LN using a translation dictionary. (3) Additionally retain all appropriate

semantic relations between senses from the existing wordnet in order to arrive at a

new wordnet for LN.

The main challenge lies in determining which translations are appropriate for

which senses. A dictionary translating an L0-term e to an LN-term t does not imply

that t applies to all senses of e. For example, with regard to the translation from the

English word ‘‘bank’’ to the German ‘‘Bank’’, we observe that the English term can

also be used for riverbanks, while the German ‘‘Bank’’ cannot (and likewise,

German ‘‘Bank’’ can also refer to a park bench, which does not hold for the English

term).

In order to address these problems, several different heuristics have been

proposed. Knight (1993) created an ontology for machine translation by linking

entries in Longman’s Dictionary of Contemporary English to WordNet, taking into

account gloss definitions as well as the semantic hierarchy information present in

the dictionary, though unfortunately not available in the settings we consider (cf.

Sect. 4.2). Okumura and Hovy (1994) used a Japanese-English dictionary to link a

Japanese lexicon to this ontology, based on several heuristics, most importantly

monosemy, i.e. considering when the ontology lists only one candidate concept for

an English translation, and equivalent word matches, i.e. accepting the concepts

shared by multiple translations of a word.

Another important line of research starting with Rigau and Agirre (1995), and

extended by Atserias et al. (1997) resulted in automatic techniques for creating

preliminary noun-only versions of the Spanish WordNet and later also the Catalan

WordNet (Benitez et al. 1998). Several heuristic decision criteria were used in order

to identify suitable translations, e.g. monosemy/polysemy heuristics, checking for

senses with multiple terms having the same LN-translation, as well as heuristics

based on conceptual distance measures. Later, these were combined with additional

Hungarian-specific heuristics to create a Hungarian nominal WordNet (Miháltz and

Prószéky 2004).

Pianta et al. (2002) used similar ideas in conjunction with a cosine similarity-

based heuristic to produce rankings of the most likely candidate senses. In their

work, the ranking was not used to automatically generate a wordnet but merely as an

aid to human lexicographers that allowed them to work at faster pace. This
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methodology was used to create MultiWordNet Italian and later also adopted for the

Hebrew WordNet (Ordan and Wintner 2007).

Sathapornrungkij and Pluempitiwiriyawej (2005) used criteria proposed by

Atserias et al. (1997), and then performed a regression analysis in order to reduce

the number of accepted associations and thus increase the accuracy. Since they

merely relied on 12 binary criteria rather than numeric scores, they were unable to

obtain a higher recall by applying their model to other term-sense pairs not fulfilling

one of the chosen criteria.

A more advanced approach that requires only minimal human work lies in using

machine learning algorithms based on a large number of scores to identify more

subtle decision rules. These decision rules can rely on a number of different

heuristic scores with different thresholds.

4 Building wordnets by learning classifications

4.1 General outline

In order to build wordnets automatically, we suggest the following approach. Let LN

denote the language for which a wordnet is to be constructed, and L0 denote the

language of an existing wordnet that serves as a template for the new one, in our

case the English language due to our choice of Princeton WordNet as the template.

Acknowledging the caveats pointed out in Sect. 5, we can treat this existing wordnet

as providing an inventory of possible senses.

The most important desideratum obviously are the links from terms in LN to their

respective senses. This challenge is tackled by means of translation dictionaries,

which we use to obtain translations of terms from LN to terms from L0. These

translations in turn allow us to construct for each of the original LN-terms a

candidate set of synsets that are potentially valid senses.

The central difficulty then is determining which of the candidate synsets to accept

and which not. Given the polysemy of terms in L0, it often turns out that the

majority of the candidate synsets are not acceptable as senses for the LN-term. Our

approach relies on a set of training associations between LN-terms and synsets to

learn a disambiguation model that can then provide confidence scores indicating

how certain we can be about a particular association being correct.

To create this disambiguation model, we compute several numeric scores

(feature values) for a given association between an LN term t and a candidate synset

s, which together constitute a feature vector. Based on a small set of manually

established labels for such (t, s)-pairs, we create the corresponding training set of

feature vectors. The disambiguation model can then be derived using well-known

classification learning techniques that consider statistical properties of the training

vectors. Such a model can be used to make predictions for any other (t, s)-pair. To

create the new wordnet, the model is applied to all pairs (t, s) consisting of an LN

term t and one of its candidate synsets s. In a final step, one can then import certain

relations between synsets from the existing wordnet.
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This approach has several advantages compared to the previous work in this field

(cf. Sect. 3). First of all, the previous automatic approaches were based on hard

acceptance criteria—either a (t, s)-pair satisfies a criterion or not. Many attributes of

word senses do not lend themselves easily to such an antagonistic view, e.g. sense

relatedness measures produce numeric scores, and thus can be better accommodated

in a model that uses real-valued feature vectors. Furthermore, while Atserias et al.

(1997) investigate combinations of two heuristics to arrive at a greater accuracy, a

classification learning approach can take into account suitable combinations of even

more heuristics, indeed arbitrary linear (or even non-linear) combinations of feature

values.

Following this general description of the overall procedure, the following

sections will expound on several aspects in much greater detail.

4.2 Candidate sets

Given a translation from a term t from LN to a term e from L0, it is safe to assume

that there is some semantic overlap between t and e, and hence there is a reasonably

high probability that some sense of e is also a sense of t.
Our approach makes use of translation dictionaries, however with the constraint

of relying on a minimal amount of information specific to LN so that the procedure

remains generalizable to as many languages as possible. The dictionary is thus

conceived as offering a simple n:m-mapping between terms in L0 and terms in

LN, with optional part of speech information, as in the following German-English

excerpt:

{n} Schulabbrecher - dropout

. . . . . .

{n} Schulklasse - class

{n} Schulklasse - form

. . . . . .

schulmäßig - scholastic

{adv} schulmäßig - scholastically

We thus proceed as follows: for each term t from LN, retrieve the set of

translations /(t). For each L0-translation e in such a /(t), retrieve the set of senses

r(e) from our existing wordnet, e.g. for the German term ‘‘Schulklasse’’ the senses

of the translations ‘‘class’’ and ‘‘form’’ would be considered.

The union
S

e2/ðtÞ
rðeÞ then constitutes the candidate set C(t) for a particular term

t, and our goal will be to determine for each sense s 2 CðtÞ whether it is appropriate

to consider s a sense of t. This is undoubtedly a very difficult task, as the dictionaries

provide only limited information that could aid in determining which of the often

many different senses apply, e.g. WordNet lists 9 senses for the word ‘‘class’’ and

23 senses for ‘‘form’’.
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4.3 Feature computation

In our approach, this task of determining the appropriate senses among the

candidates is construed as a binary classification problem. A real-valued feature

vector x is created for each pair (t, s) of a term t from LN and a relevant candidate

sense s 2 CðtÞ: For example, if t represents ‘‘Schulklasse’’, then s could be one of

the senses of ‘‘class’’. In order to create the feature vectors, a variety of different

scores xi are used as features and combined as components of numeric vectors

x ¼ ðx1; . . .; xmÞ 2 R
m: These scores xi are intended to quantify some information

about the respective term-sense pair.

4.3.1 Sense weighting functions

Several features that will be described later on depend on some kind of assessment

of the importance of senses s with respect to the particular LN-term t under

consideration. We consider the following weighting functions c(t, s):

• c1(t, s) = 1 is used for unweighted features

• clc(t, s) represents an estimation of the lexical category compatibility between t
and s as a value in [0, 1], where 0 means they are incompatible, e.g. when t is a

noun and s is an adjective sense, and 1 means they are fully compatible (see

Sect. 4.3.6 for more information on how these values are obtained).

• cr(t, s) considers the ranks of the senses as listed by WordNet for the translations of

t, as these are indicators for the importance of a sense. It is computed as follows:

crðt; sÞ ¼ clcðt; sÞ
X

e2/ðtÞ

1

rðe; sÞ

2

4

3

5

where r(e, s) yields 1 if s is the highest-ranked sense for e, 2 for the second

sense, and so on.

• cf(t, s) considers the corpus frequency information provided with WordNet:

cfðt; sÞ ¼ clcðt; sÞ
X

e2/ðtÞ

f ðe; sÞ
P

s02rðeÞ
ks;s0 f ðe; s0Þ

2

6
4

3

7
5

where f(e, s) returns the number of occurrences of term e with sense s in the

SemCor corpus, and ks;s0 is 1 if the lexical categories of s and s0 match, and 0

otherwise.

4.3.2 Semantic relatedness measures

Apart from weighting functions, our approach is fundamentally based on measures

of semantic relatedness between senses, e.g. the single sense of ‘‘schoolhouse’’ is

related to the educational institution sense of ‘‘school’’, but not to the sense of
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‘‘school’’ that refers to groups of fish. Before going into details of how semantic

relatedness contributes to many of our fitness scores, we shall first introduce several

relatedness estimation heuristics.

• simid(s1, s2) is simply the trivial identity indicator function, i.e. yields 1 if

s1 = s2, and 0 otherwise.

simidðs1; s2Þ ¼
1 s1 ¼ s2

0 otherwise

�

• simf(s1, s2) considers not only whether two senses are identical but also takes

into account senses that stand in a parent-child or sibling relationship in terms of

the hypernym hierarchy.

simfðs1; s2Þ ¼

1 s1 ¼ s2

0:8 hypernymy/hyponymy

0:7 siblings, no hypernymy

0 otherwise

8
>><

>>:

• simn(s1, s2) considers the neighbourhood in the graph constituted by WordNet’s

senses and sense relations. It acknowledges relations other than hypernymy/

hyponymy as well as transitive connections (e.g. a holonym of a hypernym). For

a given path in the graph, one can compute a proximity score multiplicatively

from relation-specific edge weights (e.g. 0.8 for immediate hypernymy, 0.7 for

immediate holonymy). The relatedness score is defined as the maximum prox-

imity score for any path between s1 and s2 if this maximum is above or equal to a

pre-defined threshold an = 0.35, and 0 otherwise. It can be obtained efficiently

using a Dijkstra-like algorithm (de Melo and Siersdorfer 2007).

• simc(s1, s2) uses the cosine similarity of extended gloss context strings for senses. For

each of the two senses s1 and s2, extended gloss descriptions are created by

concatenating the WordNet glosses and lexicalizations associated directly with the

senses as well as those associated with certain related senses (senses connected via

hyponymy, derivation/derived, member/part holonymy, and instance relations, as

well as two levels of hypernyms). The terms in these glosses are stemmed using

Porter’s stemmer, and the two extended gloss descriptions are then recast as bag-of-

words vectors v1, v2, where each dimension represents the TF-IDF score of a

stemmed term from the extended glosses. One then computes the inner product of

these two gloss vectors to determine the cosine of the angle hv1,v2 between them, as it

characterizes the amount of term overlap between the two context strings:

simcðs1; s2Þ ¼ cos hv1;v2
¼ hv1; v2i
jjv1jj � jjv2jj

ð1Þ

• simm(s1, s2), finally, is a meta-measure that is simply defined as

simmðs1; s2Þ ¼ maxfsimfðs1; s2Þ; simnðs1; s2Þ; simcðs1; s2Þg ð2Þ

and hence combines the power of simf, simn, and simc. It is particularly valuable due to

the fact that simn and simc are based on very different characteristics of the senses.
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4.3.3 Semantic overlap features

One important way of making use of the semantic relatedness measures is to exploit

that an association should more likely be accepted when a term t has multiple

English translations e, and the candidate sense s under consideration is somewhat

pertinent to multiple of them. For instance, the German ‘‘Schulklasse’’ has the terms

‘‘class’’ and ‘‘form’’ as translations. While ‘‘form’’ can not only refer to a body of

students who are taught together but also e.g. to a tax form, only the former of these

two senses overlaps semantically with the senses of ‘‘class’’.

Given a term t and a candidate sense s, we integrate scores of the following form

into the respective feature vector:

X

e2/ðtÞ
max

s02rðeÞ
cðt; s0Þ simðs; s0Þ ð3Þ

X

e2/ðtÞ

P
s02rðeÞ cðt; s0Þ simðs; s0Þ
P

s02rðeÞ cðt; s0Þ
ð4Þ

where sim(s1, s2) represents a semantic relatedness measure and the c(t, s) function

provides weights as described earlier. The simple identity relatedness function simid

and the constant weighting function c1(t, s) = 1 make Eq. 3 yield a simple count of

how many English terms are mapped to the sense, reminiscent e.g. of the equivalent

word matching of Okumura and Hovy (1994) (cf. Sect. 3). By using the above

formulae to produce a large number of feature values with all combinations of

weighting functions and relatedness measures mentioned in Sects. 4.3.1 and 4.3.2,

we are additionally able to account for cases where the terms are related but do not

share senses.

4.3.4 Polysemy-based scores

Another set of features are based on the polysemy of the L0-translations, i.e. on the

idea that an association is more likely correct whenever there are few alternative

senses to choose from. Akin to the monosemy heuristic of Okumura et al. (see Sect.

3), we can consider for instance the German ‘‘Schulleiter’’ with its translation

‘‘headmaster’’, which in turn only has one single sense listed in WordNet, so it is

rather safe to accept this sense also for the German term. More generally, given a

term t and a sense s, several scores can be computed as

1þ
X

s02CðtÞ
cðt; s0Þð1� simðs; s0ÞÞ

0

@

1

A

�1

ð5Þ

where c(t, s) is a weighting function and C(t) stands for the complete candidate set.

Another set of scores is computed as
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X

e2/ðtÞ

1rðeÞðsÞ
1þ

P
s02rðeÞ cðt; s0Þð1� simðs; s0ÞÞ ð6Þ

where 1r(e)(s) is the indicator function for r(e), and therefore yields 1 if s 2 rðeÞ
and 0 otherwise.

Again, we can use simid(s1, s2) and c1(t, s) to illustrate the simplest case: With

these choices, Eq. 5 yields the reciprocal of the total number of candidate senses and

in Eq. 6 the denominator of each addend becomes 1 whenever the respective term e is

monosemous according to WordNet. More advanced scores are computed by

• using Eqs. 5, 6 with c1(t, s), combined with either simf, simc, simn, or simm, and

• using Eq. 6 with simid(s1, s2) and one of the weighting functions

clc(t, s), cr(t, s), or cf(t, s).

4.3.5 Additional features

We further consider a series of other, less essential features, including the following:

• scores based on the number of translations

X

e2/ðtÞ
kðt; eÞ

0

@

1

A

�1

where k(t, e) is a translation weighting function that can be either kid(t, e) = 1 or

kwn(t, e), which is 1 if rðeÞ 6¼ ;; and 0 otherwise.

• the ratio

P
e2/ðtÞ kwnðt; eÞ

P
e2/ðtÞ kidðt; eÞ

¼
P

e2/ðtÞ kwnðt; eÞ
/ðtÞj j

for the above definitions of kwn and kid.

• a score based on back-translations

X

e2/ðtÞ

1rðeÞðsÞ
/�1ðeÞ
�
�

�
�

where /-1(e) is defined as ft j e 2 /ðtÞg:
• the number of lexicalizations of the candidate sense, i.e. r�1ðsÞ

�
�

�
�; where r-1(s)

is defined as fe j s 2 rðeÞg:
• the ratio of sense lexicalizations that are translations of t, i.e.

P
e2r�1ðsÞ ktrðt; eÞ

r�1ðsÞj j

where r-1(s) is defined as above, and ktr(t, e) yields 1 if e 2 /ðtÞ and 0

otherwise.
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• indicator values that express whether the candidate sense s is a noun, verb,

adjective, or adverb sense, respectively.

4.3.6 Lexical category compatibility

Unlike previous work, our study considers all lexical categories (parts of speech)

covered by the existing wordnet rather than just nouns. This immediately leads to

the problem that the number of candidate senses greatly increases, and we need to

come up with some means of preventing a noun from being mapped to a verb sense

in WordNet, for instance.

Our solution rests on two pillars. Obviously, whenever the translation dictionary

explicitly provides lexical category information, one can simply use hard-coded

compatibility indicators, e.g. we give any German adjective a compatibility value of

0.0 with English noun senses, but 1.0 with English adjective as well as adverb

senses.

In light of the fact that such explicit information may not always be available, we

resort to additional heuristics when necessary, thereby ensuring that our approach

remains applicable to a broad range of different scenarios. For each lexical category,

a C4.5 decision tree is used to estimate the compatibility based on superficial

attributes of the terms such as suffixes and capitalization. In many languages, such

attributes provide hints about the part of speech of a word. Growing the trees does

not require any manually created training data, because we can leverage terms

where all candidate senses share the same lexical category as examples. The

features employed are given in the following list. Note that since the terms in LN can

be multi-word expressions, much of this information is captured separately for the

first and last word of any candidate expression.

• prefixes of the first and last word up to a length of 10, e.g. for the German verb

‘‘einschulen’’, ‘‘e’’, ‘‘ei’’, ‘‘ein’’, etc. would be considered

• suffixes of the first and last word up to a length of 10 (without case conversion),

e.g. ‘‘n’’, ‘‘en’’, ‘‘len’’, etc. for ‘‘einschulen’’.

• capitalization of the first and last word (Boolean features for no capitalization,

capitalized first character, and all characters capitalized)

• term length

The decision trees were pruned to have confidence levels of at least 0.25 with at

least 2 instances per leaf. The confidence estimations from the leaves can then be

used to determine a lexical category compatibility score as a feature in the feature

vector. For languages where the predictions are too unreliable, we may instead use a

constant value of 0.5.

4.4 Learning the disambiguation model

Having defined a feature computation procedure, we can apply well-known

classification learning techniques to derive the disambiguation model.
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A classification is an assignment of class labels y 2 Y to objects x 2 X ; and can be

formalized as a function bf : X � Y �! ½0; 1� that, given such an x and y, yields a value

that provides the degree of confidence in the assignment being correct. We consider only

binary problems, where Y ¼ fA;Ag for some class A and its complement A; and only

consider the single label case, where each object is assigned exactly one class. Learning a

classification then consists in finding a function f that approximates a true classification bf
with low approximation error, given a set of correctly labelled training examples

ðx; yÞ 2 X � Y: In our case, the objects are term-sense pairs x = (t, s), and the class y is

either A or its complement A; where A is the class of all (t, s) pairs that represent

appropriate term-sense associations.

Provided that the objects x 2 X are represented in a suitable manner, most

commonly as numerical feature vectors x in an m-dimensional Euclidean feature

space R
m; one of several learning algorithms can be employed to learn a

classification. Support vector machines constitute a class of algorithms based on the

idea of computing a decision hyperplane wT/(x) ? b = 0 that maximizes the

margin between positive and negative training instances in the feature space

(Vapnik 1998). Such maximum-margin hyperplanes tend to entail lower general-

ization errors than other separation surfaces, and the task of finding them leads to a

quadratic optimization problem. Additional slack variables may be included to

obtain a soft margin solution that is able to cope with training data that cannot be

separated cleanly (Cortes and Vapnik 1995). The decision surface can be computed

using Lagrange multipliers and decomposing techniques such as sequential minimal

optimization (Platt 1999).

Using a simple dot product, we can then determine the distance f ðxÞ 2 R of a

new instance x to this decision hyperplane in the feature space. A sigmoid function

can be used to estimate posterior probabilities Pðy ¼ AjxÞ ¼ 1
1þ expðaf ðxÞþ bÞ from

these distances, where parameter fitting for a and b is performed using maximum

likelihood estimation on the training data (Platt 2000; Lin et al. 2007). These

posterior probabilities can be interpreted as confidence values c(t,s) = cx =

Pðy ¼ AjxÞ for a given instance x = (t, s).

4.5 Generating the wordnet instance

We then apply one of the following rules for every (t, s) where t is an LN-term from

the translation dictionary and s 2 CðtÞ is a candidate sense as defined earlier:

(a) accept as a weighted connection with weight c(t,s) if and only if c(t,s) > 0, or

(b) accept as an unweighted connection if and only if either c(t,s) C cmin, or

cðt;sÞ � c0min and 8s0 6¼ s : cðt;sÞ[ cðt;s0Þ (for two pre-defined constants cmin and

c0min� cmin).

The first rule results in a weighted statistical wordnet for LN, whereas the second

one yields a more conventional unweighted wordnet.

Finally, new connections as well as of course new senses may be introduced

manually to make the wordnet more complete. The introduction of new senses is

particularly likely to be necessary for terms in LN that had empty candidate sets.
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Relational information for new synsets needs to be added manually. For the

original synsets from the existing wordnet, we can immediately import a large

number of links. Most importantly, hypernym links between synsets that have been

found to have lexicalizations in LN can quite safely be transferred to the new

wordnet. It should however be noted that certain relations need to be re-interpreted

as generic relatedness links between senses (e.g. the derivation relation), or are

completely excluded from being imported (e.g. region domains). These issues are

discussed in more detail in Sect. 5.4.

5 Evaluation and analysis of a machine-generated wordnet

While our approach is applicable to virtually any language, in the remainder of this

article, we will focus on a German-language wordnet produced using our machine

learning approach. Princeton WordNet 3.0, which covers around 155,000 English

terms and around 118,000 senses, served as the existing template for the new

wordnet. We further relied on the Ding German-English dictionary (Richter 2007), a

large and fairly reliable digital translation dictionary with around 216,000 entries,

but not much additional information apart from optional part of speech tags. A

linear kernel SVM decision hyperplane was computed using LIBSVM (Chang and

Lin 2001) and a training set consisting of 1,834 candidate associations (for 350

randomly selected German terms) that were manually classified as correct (22 %) or

incorrect. The values cmin = 0.5 and c0min ¼ 0:45 were chosen as classification

thresholds as described in Sect. 4 to generate the German wordnet. In order to obtain

unbiased evaluation results, no form of manual revision was performed.

5.1 Accuracy and coverage

When evaluating the quality of this wordnet, we cannot rely on existing wordnets

because these only provide positive examples but not negative ones, e.g. the fact

that GermaNet (Kunze and Lemnitzer 2002) does not list the body of artists or

thinkers sense of ‘‘Schule’’ (as in ‘‘Frankfurter Schule’’) does not imply that this

sense association is incorrect. Instead, we considered a test set of 1,624 labelled

sense associations obtained in the same way as the training set but completely

independent from it, and thus not involved in any way in the wordnet building

process. One can then evaluate to what degree the generated wordnet corresponds

with the test set using standard evaluation measures. Given a test set, the precision is

defined as PT

PTþPF
; and the recall is defined as PT

PTþNF
; where PT, PF, NF are the

number of true positives, false positives, and false negatives, respectively. Table 1

summarizes the results for our German wordnet, showing the precision and recall

with respect to this test set.

The results demonstrate that indeed a surprisingly high level of precision and

recall can be obtained with fully automated techniques, considering the difficulty of

the task. While the precision might not fulfil the high lexicographical standards

adopted by traditional dictionary publishers, we shall later see that it suffices for
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many practical applications. Furthermore, one of course may obtain a higher level

of precision at the expense of a lower recall by adjusting the acceptance thresholds.

Table 2 provides a sample of results obtained using alternative thresholds. For very

high recall levels, an increased precision might not be realistic even with purely

manual work, considering that Miháltz and Prószéky (2004) report an inter-

annotator agreement of 84.73 % for such associations.

In addition to the recall scores in Table 1, which are based on the test set, Table 3

provides absolute numbers of terms covered by the German wordnet (using the

classification thresholds cmin = 0.5 and c0min ¼ 0:45). While smaller than GermaNet

5.0, this automatically generated wordnet instance is already larger by an order of

magnitude than many other manually compiled ones.

Table 4 gives an overview of the polysemy of the terms as covered by our

wordnet, with arithmetic means computed from the polysemy either of all terms, or

exclusively from terms that are polysemous with respect to the wordnet.

A more qualitative assessment of the accuracy and coverage revealed the

following issues:

• Non-Uniformity of Coverage: While even many specialized terms are included

(e.g. ‘‘Kokarde’’, ‘‘Vasokonstriktion’’, ‘‘Leydener Flasche’’), certain very

common terms were found to be missing (e.g. ‘‘Kofferraum’’, ‘‘Schloss’’,

‘‘Bank’’). This seems to arise from the fact that common terms tend to be more

polysemous, thus making automatic associations difficult, though frequently

such terms also have multiple translations, which tends to facilitate the mapping

process. One solution would be manually adding associations for terms with

Table 1 Evaluation of

precision and recall on an

independent test set

Precision Recall

Nouns 79.87 69.40

Verbs 91.43 57.14

Adjectives 78.46 62.96

Adverbs 81.81 60.00

Overall 81.11 65.37

Table 2 Alternative confidence

thresholds
cmin c0min Precision (%) Recall (%)

0.90 0.80 94.21 34.03

0.90 0.60 91.50 41.79

0.70 0.60 87.50 52.24

0.60 0.50 83.90 59.10

0.50 0.45 81.11 65.37

0.40 0.35 73.64 72.54

0.35 0.25 70.53 80.00

0.30 0.25 67.32 82.39

0.20 0.15 55.93 90.15

0.10 0.05 40.41 94.93
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high corpus frequency values, which due to Zipf’s law would quickly improve

the relative coverage of terms in ordinary texts. Another option is to rely on

multilingual evidence (de Melo and Weikum 2009).

• Lexical Gaps and Incongruences: Another issue is the lack of senses for which

there are no lexicalized translations in the English language, or which are not

covered appropriately by the source wordnet, e.g. the German word ‘‘Feiera-
bend’’ means the finishing time of the daily working hours. The solution could

consist in smartly adding new senses to the sense hierarchy based on

paraphrasing translations (e.g. as a hyponym of ‘‘time’’ for our current example).

• Multi-word expressions in LN: Certain multi-word translations in LN might be

considered inappropriate for inclusion in a lexical resource, e.g. the Ding

dictionary lists ‘‘Jahr zwischen Schule und Universität’’ as a translation of ‘‘gap
year’’. By generally excluding all multi-word expressions one would also likely

drop a lot of lexicalized expressions, e.g. German ‘‘runde Klammer’’ (paren-

thesis). A much better solution is to automatically mark all multi-word

expressions as possibly unlexicalized whenever no matching entry is found in

monolingual dictionaries or in corpus-derived lists.

Of course, the most general and reliable solution to ensure that the wordnet truly

captures the typical senses of all terms and is free of incorrect sense associations is

to perform a complete manual verification and revision process.

5.2 Comparison with alternative approaches

Our technique is further compared to four alternative approaches. We study the first

sense heuristic, which involves simply accepting the first sense listed by WordNet for

any English term. This heuristic is frequently cited as being more successful than many

Table 3 Quantitative

Assessment of Coverage of the

German wordnet

Sense

associations

Terms Lexicalized

senses

Nouns 53,146 35,089 28,007

Verbs 13,875 5,908 6,304

Adjectives 21,799 13,772 9,949

Adverbs 4,243 2,992 2,593

Total 93,063 55,522 46,853

Table 4 Polysemy of terms and mean number of lexicalizations (excluding unlexicalized senses)

Mean term

polysemy

Mean term polysemy

excluding monosemous

Mean no. of sense

lexicalizations

Nouns 1.51 2.95 1.90

Verbs 2.35 4.36 2.20

Adjectives 1.58 2.79 2.19

Adverbs 1.42 2.52 1.64

Total 1.68 3.07 1.99
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other methods in word sense disambiguation tasks because the rank reflects the corpus

frequency and importance of a sense. We also evaluate existing automatic approaches

presented in Sect. 3. For Rigau and Agirre (1995), we considered the approach described

in the second part of their paper, which was used to obtain a preliminary Spanish

WordNet. From the study by Atserias et al. (1997), we consider the monosemy 1–4,

variant, as well as the combined brother and polysemy 1/2 criteria. The CD criteria and

the field criterion were not applied because their implementation in the original study is

mainly based on additional lexical information for the Spanish language apart from the

list of translations. The results, presented in Table 5, demonstrate that our learning-

based approach outperforms the existing approaches both in terms of precision as well as

in terms of recall. While two previous heuristics arrive at similarly high levels of recall,

this occurs at the expense of very low precision scores. By adjusting the cmin; c
0
min

confidence thresholds, our method can be made to produce recall scores well above

90 % at such levels of precision (cf. Table 2).

5.3 Relational coverage

By producing associations with senses of an existing source wordnet, we have the great

advantage of immediately being able to import relations between the respective synsets.

An excerpt of some of the relations we imported is given in Table 6.

Lexical relations between particular terms cannot, in general, be transferred

automatically, e.g. a region domain for a term in one language, signifying in what

geographical region the term is used, will not apply to a second language. However,

certain lexical relations such as the derivation relation still provide valuable information

when interpreted as a general indicator of semantic relatedness, as can be seen in

Table 7, which shows the results of a human evaluation for several different relation

types. Incorrect relations are almost entirely due to incorrect term-sense associations.

5.4 Structural adequacy

As mentioned earlier, our machine learning approach is very parsimonious with

respect to LN-specific prerequisites, and hence scales well to new languages. Some

might contend that using one wordnet as the structural basis for another wordnet

does not do justice to the structure of the new language’s lexicon.

The most significant issue is certainly that the source wordnet may lack senses for

certain terms in the new language or may not make the right sense distinctions, as in the

case of the German ‘‘Feierabend’’. This point has already been discussed in Sect. 5.1. It

Table 5 Comparison with

existing methods

a Excluding criteria based on

additional background

knowledge (see text)

Precision (%) Recall (%)

First sense heuristic 40.36 67.46

Rigau & Agirre 48.97 63.58

Atserias et al.a 75.00 35.82

Benı́tez et al. 69.72 45.37

Our approach 81.11 65.37
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should also be clear that senses without any associated terms are to be considered

unlexicalized nodes that do not directly represent the lexicon of the language.

Apart from these two considerations, it seems that general structural differences

between languages rarely are an issue. When new wordnets are built independently

from existing wordnets, many of the structural differences will not be due to actual

conceptual differences between languages, but rather result from subjective

decisions made by the individual human modellers (Pianta et al. 2002).

Some of the rare examples of cultural differences affecting relations between two

senses include perhaps the question of whether the local term for ‘‘guinea pig’’

should count as a hyponym of the respective term for ‘‘pet’’. For such cases, our

suggestion is to manually add relation attributes that describe the idea of a

connection being language-specific, culturally biased, or based on a specific

taxonomy rather than holding unconditionally.

A more general issue is the adequacy of the four lexical categories (parts of

speech) considered by Princeton WordNet. Fortunately, most of the differences

Table 6 An excerpt of some of

the imported relations

We distinguish full links

between two senses both with

LN-lexicalizations, and outgoing

links from senses with an LN

lexicalization

Relation Full links Outgoing

Hyponymy 26,324 60,062

Hypernymy 26,324 33,725

Similarity 10,186 14,785

Has category 2,131 2,241

Category of 2,131 6,135

Has instance 641 5,936

Instance of 641 1,131

Part meronymy 2,471 6,029

Part holonymy 2,471 3,408

Member meronymy 400 734

Member holonymy 400 1,517

Substance meronymy 190 325

Substance holonymy 190 414

Antonymy (as sense opposition) 4,113 5,393

Derivation (as semantic similarity) 42,364 54,292

Table 7 Quality assessment for

imported relations: For each

relation type, 100 randomly

selected links between two

senses with LN-lexicalizations

were evaluated

Relation Accuracy (%)

Hyponymy, hypernymy 84

Similarity 90

Category 91

Instance 93

Part meronymy, holonymy 83

Member meronymy, holonymy 89

Substance meronymy, holonymy 83

Antonymy (as sense opposition) 95

Derivation (as semantic similarity) 96
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between languages in this respect either concern functional words, or occur at very

fine levels of distinctions, e.g. genus distinctions for German nouns, and thus are

conventionally considered irrelevant to wordnets, though such information could be

derived from monolingual dictionaries and added to the wordnet.

6 Applications

6.1 Human consultation

One major disadvantage of automatically built wordnets is the lack of native-

language glosses and example sentences, although this problem is not unique to

automatically-built wordnets. Because of the great effort involved in compiling such

information, manually built wordnets such as GermaNet also lack glosses and

example sentences for the overwhelming majority of the senses listed. In this

respect, automatically produced aligned wordnets have the advantage of at least

making English-language glosses accessible.

Another significant issue is the quality of the sense associations. As people are

more familiar with high-quality print dictionaries, they do not expect to encounter

incorrect entries when consulting a WordNet-like resource.

We found that machine-generated wordnets can instead be used to provide machine-

generated thesauri, where users expect to find more generally related terms rather than

precise synonyms and gloss descriptions. In order to generate such a thesaurus, we relied

on a simple technique that looks up all senses of a term as well as certain related senses,

and then forms the union of all lexicalizations of these senses ((Algorithm 6.1 with

nh = 2, no = 2, ng = 1). Table 8 provides a sample entry from the German thesaurus

resulting from our wordnet, and demonstrates that such resources can indeed be used for

example as built-in thesauri in word processing applications.
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6.2 Natural language processing

In this section, we will discuss some of the possible applications of automatically

generated wordnets.

It turns out that the alignment with the English WordNet proves to be a major asset not

only for cross-lingual but also for monolingual applications, as one can leverage much of

the information associated with the Princeton WordNet, e.g. the included English-

language glosses, as well as topical domain information, links to ontologies, and a range

of other third-party resources described in more detail in Sect. 2.

For the task of word sense disambiguation, Patwardhan et al. (2003) presented an

algorithm that maximizes the overlap of the English-language glosses (Patwardhan

et al. 2003) with promising results, however we were unable to evaluate it more

adequately due to the lack of an appropriate sense-tagged test corpus. One issue we

noted was that the generated wordnet did not always cover all of the terms and

senses to be disambiguated, which means that it is not a perfect sense inventory for

word sense disambiguation tasks.

Apart from this, we believe that automatically generated wordnets are well-suited for

virtually all other tasks that wordnets can been used for, including conventional

information retrieval, multimedia retrieval, cross-lingual information retrieval (Chen

et al. 2000), text classification, text summarization, coreference resolution (Harabagiu

et al. 2001), machine translation, as well as semantic relatedness estimation and cross-

lingual text classification, which we will now consider in more detail.

6.3 Case study: semantic relatedness

Several studies have attempted to devise means of automatically approximating

semantic relatedness judgments made by humans, predicting e.g. that most humans

consider the two terms ‘‘fish’’ and ‘‘water’’ semantically related. Such relatedness

information is useful for a number of different tasks in information retrieval and text

mining, and various techniques have been proposed, many relying on lexical

resources such as WordNet. For the German language, Gurevych (2005) reported

that Lesk-style similarity measures based on the similarity of gloss descriptions

(Lesk 1986) do not work well in their original form because GermaNet features only

very few glosses, and those that do exist tend to be rather short. With machine-

Table 8 Sample entries from generated thesaurus (which contains entries for 55,522 terms, each entry

listing 17 additional related terms on average)

headword: Leseratte

Buchgelehrte, Buchgelehrter, Bücherwurm, Geisteswissenschaftler, Gelehrte, Gelehrter, Stubengelehrte,

Stubengelehrter, Student, Studentin, Wissenschaftler

headword: leserlich

Lesbarkeit, Verständlichkeit deutlich, entzifferbar, klar, lesbar, lesenswert, unlesbar, unleserlich,

übersichtlich
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generated aligned wordnets, however, one can apply virtually any existing measure

of relatedness that is based on the English WordNet, because English-language

glosses and co-occurrence data are available.

We proceeded using the following assessment technique. Given two terms

t1, t2, one estimates their semantic relatedness using the maximum relatedness score

between any of their two senses:

simðt1; t2Þ ¼ max
s12rðt1Þ

max
s22rðt2Þ

simðs1; s2Þ ð7Þ

For the relatedness scores sim(s1, s2), we consider three different approaches,

described in more detail in Sect. 4.3.2

1. simn(s1, s2): graph neighbourhood proximity

2. simc(s1, s2): cosine similarity of extended glosses

3. simm(s1, s2): maximum (meta-method)

For evaluating the approach, we employed three German datasets (Gurevych

2005; Zesch and Gurevych 2006) that capture the mean of relatedness assessments

made by human judges. In each case, the assessments computed by our methods

were compared with these means, and Pearson’s sample correlation coefficient was

computed. The results are displayed in Table 9, where we also list the current state-

of-the-art scores obtained for GermaNet and Wikipedia as reported by Gurevych

et al. (2007).

The results show that our semantic relatedness measures lead to near-optimal

correlations with respect to the human inter-annotator agreement correlations. The

main drawback of our approach is a reduced coverage compared to Wikipedia and

GermaNet, because scores can only be computed when both parts of a term pair are

covered by the generated wordnet.

One advantage of our approach is that it may also be applied without any further

changes to the task of cross-lingually assessing the relatedness of English terms with

German terms. In the following section, we will take a closer look at the general

suitability of our wordnet for multilingual applications.

Table 9 Evaluation of semantic relatedness measures, using Pearson’s sample correlation coefficient

Dataset GUR65 GUR350 ZG222

Pearson r Coverage Pearson r Coverage Pearson r Coverage

Inter-Annot. Agreem. 0.81 (65) 0.69 (350) 0.49 (222)

Wikipedia (ESA) 0.56 65 0.52 333 0.32 205

GermaNet (Lin) 0.73 60 0.50 208 0.08 88

Gen. wordnet (graph) 0.72 54 0.64 185 0.41 89

Gen. wordnet (gloss) 0.77 54 0.59 185 0.47 89

Gen. wordnet (max.) 0.75 54 0.67 185 0.44 89

We compare our three semantic relatedness measures based on the automatically generated wordnet with

the agreement between human annotators and scores for two alternative measures as reported by Gur-

evych et al. (2007), one based on Wikipedia, the other on GermaNet
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6.4 Case study: cross-lingual text classification

Text classification is the task of assigning text documents to the classes or categories

considered most appropriate, thereby e.g. topically distinguishing texts about

thermodynamics from others dealing with quantum mechanics. This is commonly

achieved by representing each document using a vector in a high-dimensional

feature space where each feature accounts for the occurrences of a particular term

from the document set (a bag-of-words model), and then applying machine learning

techniques such as support vector machines. For more information, please refer to

Sebastiani (2002).

In comparison with the standard monolingual case, cross-lingual text classifi-

cation is a much more challenging task. Since documents from two different

languages obviously have completely different term distributions, the conventional

bag-of-words representations deliver poor results. Instead, it is necessary to induce

representations that tend to give two documents from different languages similar

representations when their content is similar.

One means of achieving this is the use of language-independent conceptual

feature spaces where the feature dimensions represent meanings of terms rather than

just the original terms. We process a document by removing stop words, performing

part of speech tagging and lemmatization using the TreeTagger (Schmid 1994), and

then map each term to the respective sense entries listed by the wordnet instance. In

order to avoid decreasing recall levels, we do not disambiguate in any way other

than acknowledging the lexical category of a term, but rather assign each sense s a

local score
wt;sP

s02rðtÞ wt;s0
whenever a term t is mapped to multiple senses s 2 rðtÞ: Here,

wt,s is the weight of the link from t to s as provided by the wordnet if the lexical

category between document term and sense match, or 0 otherwise. We test two

different setups: one relying on regular unweighted wordnets (wt;s 2 f0; 1g), and

another based on a weighted German wordnet (wt;s 2 ½0; 1�), as described in Sect.

4.5. Since the original document terms may include useful language-neutral terms

such as names of people or organizations, they are also taken into account as tokens

with a weight of 1. By summing up the weights for each local occurrence of a token

t (a term or a sense) within a document d, one arrives at document-level token

occurrence scores n(t, d), from which one can then compute TF-IDF-like feature

vectors using the following formula:

logðnðt; dÞ þ 1Þ log
jDj

jfd 2 D j nðt; dÞ� 1gj

� �

ð8Þ

where D is the set of training documents.

This approach was tested using a cross-lingual dataset derived from the Reuters

RCV1 and RCV2 collections of newswire articles (Reuters 2000a, b). We randomly

selected 15 topics shared by the two corpora in order to arrive at
15

2

� �

¼ 105

binary classification tasks, each based on 200 training documents in one language,

and 600 test documents in a second language, likewise randomly selected, however
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ensuring equal numbers of positive and negative examples in order to avoid biased

error rates. We considered a) German training documents and English test

documents and b) English training documents and German test documents. For

training, we relied on the SVMlight implementation (Joachims 1999) of support

vector machine learning (Vapnik 1998), which is known to work very well for text

classification.

The results in Table 10 clearly show that automatically built wordnets aid in

cross-lingual text classification. Since many of the Reuters topic categories are

business-related, using only the original document terms, which include names of

companies and people, already works surprisingly well, though presumably not well

enough for use in production settings. By considering wordnet senses, both

precision and recall are boosted significantly. This implies that English terms in the

training set are being mapped to the same senses as the corresponding German terms

in the test documents. Using the weighted wordnet version further improves the

recall, as more relevant terms and senses are covered.

7 Conclusions

We have shown that wordnets can be built automatically if we are willing to accept

a certain percentage of imprecise sense associations, and that these resources are

nevertheless quite useful for various purposes. Our approach to constructing

wordnets is based on statistical learning from a number of numeric scores and leads

to a better coverage than the hard criteria proposed in previous studies, while

simultaneously also allowing for a higher level of accuracy.

We have since conducted further experiments demonstrating that the method

presented scales well to new languages (de Melo and Weikum 2009), as care was

taken to require just a minimal amount of information specific to LN. This enables us

to produce a large-scale multilingual wordnet covering many different languages,

available at http://www.mpii.de/yago-naga/uwn/.

Table 10 Evaluation of cross-lingual text classification in terms of micro-averaged accuracy, precision,

recall, and F1-score for a German-English as well as an English-German setup

Accuracy Precision Recall F1

German-English

TF-IDF 80.56 77.49 86.14 81.59

Wordnet (unweighted) 87.09 85.27 89.68 87.42

Wordnet (weighted) 87.98 85.48 91.51 88.39

English-German

TF-IDF 78.82 79.19 78.20 78.69

Wordnet (unweighted) 85.39 87.38 82.74 84.99

Wordnet (weighted) 87.47 87.73 87.07 87.40

We compare the standard bag-of-words TF-IDF representation with two wordnet-based representations,

one using an unweighted, the other based on a weighted German wordnet
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Wordnets of this sort greatly facilitate interoperability, as they are aligned to the

original Princeton WordNet, and thus also to other resources that are similarly

aligned. First of all, of course, the machine-generated wordnets can serve as a

valuable starting point for establishing more reliable wordnets, which would involve

manually extending the coverage and addressing issues arising from differences

between the lexicons of different languages. At the same time, machine-generated

wordnets can be used directly without further revision to generate thesauri for

human use, or for a number of different natural language processing applications, as

we have shown in particular for semantic relatedness estimation and cross-lingual

text classification.

In the future, we would like to investigate automatic techniques for extending the

coverage of such statistically generated wordnets to senses not covered by the

existing wordnets. We hope that our research has contributed to making lexical

resources available for languages that previously had not been considered by the

wordnet community.
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