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ABSTRACT In light of the millions of households that have adopted intelligent assistant powered devices,
multi-turn dialogue has become an important field of inquiry. Most current methods identify the underlying
intent in the dialogue using opaque classification techniques that fail to provide any interpretable basis for
the classification. To address this, we propose a scheme to interpret the intent in multi-turn dialogue based
on specific characteristics of the dialogue text. We rely on policy-guided reinforcement learning to identify
paths in a graph to confirm concrete paths of inference that serve as interpretable explanations. The graph is
induced based on the multi-turn dialogue user utterances, the intents, i.e., standard queries of the dialogues,
and the sub-intents associated with the dialogues. Our reinforcement learning method then discerns the
characteristics of the dialogue in chronological order as the basis for multi-turn dialogue path selection.
Finally, we consider a wide range of recently proposed knowledge graph-based recommender systems as
baselines, mostly based on deep reinforcement learning and our method performs best.

INDEX TERMS Knowledge graph, dialogue intent mining, reinforcement learning.

I. INTRODUCTION
Across the globe, millions of households have adopted intel-
ligent assistant powered devices. In light of this, multi-
turn dialogue, in particular, task-oriented multi-turn dialogue
which aims to handle with certain questions, has become an
important field of inquiry with substantial real-world impact.
The system not only needs to identify a user’s information
need from this dialogue but also locate an appropriate answer
from all the knowledge that is accessible to it. Such knowl-
edge can oftentimes be regarded as taking the form of a
knowledge graph and locating an answer often corresponds
to identifying relevant nodes in the graph [1].

Recent work in this area has exploited advances in neural
representation learning to address this task [2], [3]. How-
ever, in real-world deployments of such systems, it is not
sufficient for a multi-turn dialogue recognition system to
merely use latent vector representations for knowledge graph
nodes to identify appropriate responses. Rather, the system
ought to be able to offer the user clear explanations of how
the multi-turn dialogue led to specific intention recognition
outcomes. In this paper, we consider a knowledge graph
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providing information such as user utterances, the sub-intents
associated with the dialogues, and the standard queries of the
dialogues.

We propose a method called PGMD that draws on a neural
reinforcement learning network to navigate the knowledge
graph in pursuit of the pertinent query nodes in the graph. The
reinforcement learning agent starts from a user utterance from
the current multi-turn dialogue and searches the knowledge
graph iteratively with the goal of obtaining a precise and
interpretable path in the graph for intent recognition. As the
agent makes its prediction based on specific paths in the
graph, we have a highly interpretable model that can easily
explain the underlying process of intent recognition [4].

Thus, the goal of our paper is not only to identify the
candidate sets of intentions in multi-turn dialogue, but also
to provide an interpretable path in the knowledge graph that
explains the process of identifying such intentions. This novel
strategy yields a means of overcoming the shortcomings of
current approaches. We use the intent recognition process
as a Markov decision process based on a knowledge graph.
Reinforcement learning is invoked for each given multi-turn
dialogue, wherein the agent learns to search for the sub-
intents associated with the dialogues, and finally search for
the standard queries of the dialogues. The search path can
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serve as an explanation of the dialogue intent prediction
process.

The main contributions of this paper are as follows:
1) We use multi-turn dialogue data to construct a knowl-

edge graph and train a node embedding model for this
knowledge graph, which mainly includes the following
types of nodes: user utterance nodes, sub-intent nodes,
and standard query nodes. In light of the sparsity of the
textual data, our model draws on the BERT pre-training
model [5] to obtain the word representations of the user
utterances to train the model.

2) We propose a reinforcement learning method for path
selection called PGMD. Since multi-turn dialogue has
chronological characteristics, we consider an BiLSTM
(Bidirectional Long Short-Term Memory) network with
attentionmechanism in our reinforcement learning agent
to obtain the state characteristics of the path. And we
proposed a new reward to compute the macro-averaged
matching score between nodes on the pathwith the query
nodes.

3) We have designed multi-turn dialogue tracking path
searching algorithms including backward tracking strat-
egy and forward tracking strategy to find different paths
as candidate sets for identified intents.

II. RELATED WORK
A. KNOWLEDGE GRAPH-DRIVEN RECOMMENDATION
The primary objective in a recommendation task is to deter-
mine the suitability of items for users that they have not yet
seen or used. There are two principal ways of incorporating
a knowledge graph into a recommendation engine. The first
is based on a feature-driven recommendation method, and
involves extracting pertinent user and item attributes from the
knowledge graph as features, which can then be included into
traditional models, such as the FMmodel, LR model, etc. [6].
The second is the path-based recommendation method. [7]
considers the knowledge graph as a heterogeneous informa-
tion network and then constructs meta-graph based features
between items. [8] proposed a new model named KPRN
which can generate path based on the semantics of enti-
ties and relations. [9] transferred the relation information in
knowledge graph in order to figure out the reasons why a
user prefers an item. [10] proposed a model named KGCN
which can mine the associated attributes between items in
knowledge graph. In particular, [11]–[14] proposed differ-
ent path-based methods to get recommended results for the
Linked Open Data(LOD). [12] found out the recommended
path in LOD based on variable importance scores. [11] and
[13] used DBpedia to extract semantic path-based features to
compute the recommended results eventually. [14] made an
investigation about the incorporation of graph-based features
into LOD path-based systems. One advantage of this second
approach is the full and intuitive use of the network structure
of the knowledge graph.

In existing work, the recommendation engine is trained
based on prior interactions between users and items.

However, in our dialogue engine, we need to recommend
appropriate query nodes based on the user dialogue, and
there may not have been any prior interaction at all with
any relevant items. Thus, our setting is quite different from
general recommendation systems. However, we compare our
algorithm against state-of-the-art recommendation engines.

B. REINFORCEMENT LEARNING
In recent years, a large number of studies in different areas
have identified reinforcement learning as a promising artifi-
cial intelligence technique. Thus, reinforcement learning is
not only used for standard text mining tasks such as text
classification [15]. Additionally, it has also been explored for
knowledge graphs of the sort mentioned above. For example,
in terms of question answering, a knowledge graph may be
considered as the environment for an agent. [1] used rein-
forcement learning whose reward function considers accu-
racy, diversity and efficiency to find paths in the knowl-
edge graph and [16] proposed a multi-hop knowledge graph
to handle Question Answering. [17] proposed a knowledge
graph question answering model based on end-to-end learn-
ing. [18] proposed a collaborative system which contains two
agents. And one agent is used to reason path in knowledge
graph, another is used to extract relation from background
corpus. More recently, [4] proposed a method called Policy-
Guided Path Reasoning which couples recommendation and
interpretability by providing actual paths in a knowledge
graph. [19] proposed a method which can identify explicit
paths from users to items over the knowledge graph as the
recommendation results, and experimental results show that
not only the method gets a good recommendation results,
but also provides explanations. [20] proposed a cooperative
system including reasoning agent and information extraction
agent to handle with Question Answering problem. The rea-
soning agent identifies the path over knowledge graph, and
the information extraction agent provides shortcut or missing
relations for long-distance target entity. [21] proposed a new
performance metric for Question Answering agents which
improve the results of Question Answering models while
not to answer a limited number of questions which have
been answered correctly. [22] proposed a new method named
CogKRwhich includes summarymodule and reasoningmod-
ule to handle with the one-shot knowledge graph reasoning
problem. Besides, reinforcement learning can also be used in
automated knowledge base completion and knowledge aware
conversation generation. [23] proposed a new framework
which reasons the relations between the missing factors and
updates the knowledge base to implement the automated
knowledge base completion. [24] proposed a new chatting
machine which can generate conversation by reasoning over
the augmented knowledge graph containing both triples and
texts. We compare against such work in our experiments.

Compared with other reinforcement learning path reason-
ing methods, PGMD use an BiLSTM network with attention
mechanism to extract path features which has an important
underlying ordered time sequence, and use a new formula
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which computes the macro-averagedmatching score between
nodes on the path with the query nodes as the soft reward.
Besides, the action trimmingmethod also plays an import role
in the algorithm.

C. DIALOGUE CONSTRUCTION
Building an automated conversational agent is a long cher-
ished goal in Artificial Intelligence (AI). At present, there are
two common ways to construct a dialogue bot: generation-
based methods [25], [26] and retrieval-based methods [2],
[3], [27]–[30]. In particular, [2], [27], [28] analyzed different
baselines which aim to select the next response on the Ubuntu
Dialogue Corpus. [3] formed a fine-grained context repre-
sentation via formulating previous utterances into context
to get a better performance. [29] proposed a model named
SMN to address problem i.e., losing relationships among
utterances or important contextual information. [30] used
Deep Attention Matching Network to select response which
takes advantage of attention mechanism to extract infor-
mation from user utterance and response. Generation-based
models generate the best answer under the context. With suf-
ficient data, they can learn various ways to generate diverse
responses. However, they may not be sufficiently stable.
Retrieval-based chatbots, on the other hand, select a suitable
response from a pre-built inventory of potential responses.
Their advantage is that the entire system is relatively stable
as they only considers a specific narrow domain. However,
the set of potential answers is limited by the repository.

Multi-turn retrieval-based dialogues usually compute the
matching scores between user utterances and responses and
then select the suitable responses from the response inven-
tory. However, our method primarily identifies the standard
queries for the multi-turn dialogues. Then the users can get
responses according to the standard queries identified by our
systems.

D. DIALOGUE INTENT MINING
Generally, the dialogue systems are usually classified into
two categories including task-oriented dialogue systems and
non-task-oriented dialogue systems. The task-oriented dia-
logue systems aim to handle certain questions and the non-
task-oriented dialogue systems do not have certain targets.
The first step of the pipeline for task-oriented dialogue sys-
tems is to capture users’ intents according to the users’ utter-
ances, then the second step is to make actions based on the
task policy, and finally the systems select a decent responses
to reply to users from the pre-built inventory associated with
the actions [31]. The methods using deep learning techniques
havemade great progress in dialogue intentmining [32]–[34],
and convolutional neural networks (CNN) are used to capture
the user utterance features to identify standard queries [35].
Moreover, [36] and [37] resembled CNN-based model to get
a better performance.

There is no previous work using knowledge graphs to iden-
tify suitable query nodes with explainable paths formulti-turn

FIGURE 1. Multi-turn dialogue example.

dialogue. Our method can give clear explanations about how
the multi-turn dialogues led to the query nodes.

III. PRELIMINARIES
In a task-oriented dialog system (cf. Figure 1), the system
response in each turn of the dialogue is decided by the
intention analyzed from the previous turns of user utterances,
which plays a significant role in the whole dialogue system.
And the goal of our system is exactly the intent mining in
the certain task-oriented dialogue system via reinforcement
knowledge graph reasoning.

A. INPUT
In our experiments, we consider a dataset coming from a
company’s real customer service hotline, with 19 predefined
standard queries and about 120,000 call dialogues. As input,
we consider multi-turn dialogue data including the automated
customer service agent from the company that attempts to
identify the human caller’s intent with regard to an inventory
of standard queries, i.e., the intents for which the customer
service can provide predefined help. The user utterances in
the dataset refer to user questions, the sub-intents for dia-
logues include the demands associated with the dialogues and
the relevant business units for the dialogues, and the intents
for dialogues refer to standard queries. An example of such a
conversation is given in Table 1. The data comprises customer
utterance, business unit and demand for each turn of customer
questions or utterances, and the standard query IDs (QIDs)
for the overall multi-turn dialogue.We assume the connection
between business units and their demands is known.

B. PROBLEM FORMULATION
A knowledge graph (KG) G is a graph G = {(e, r, e′) |
e, e′ ∈ ε, r ∈ R} that captures factual information. A node
e represents an entity, class, type, or literal. ε is the set of
nodes, and R is the set of edges between pairs of entities
e, e′, where two nodes e, e′ are connected by a predicate r ,
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TABLE 1. Example of a 3-turn dialogue.

TABLE 2. Data description (counted by turns).

forming a semantic fact (subject e, predicate r , object e′), e.g.,
(Berkeley, locatedIn, California).
KGs are widely used to model such semantics relation-

ships. In this paper, we model the multi-turn dialogue process
as an ad hoc knowledge graphGD, created on the fly to capture
relationships between nodes including multi-turn dialogue
text utterances T of customers and a subset of standard
queries Q, where T ,Q ⊆ ε and T ∩ Q = ∅. The two
entities are connected via predicates rt,q, where t ∈ T , q ∈ Q.
Overall, in our dataset, there are 4 kinds of entities and 7 types
of predicates, as described in Table 2. Given a knowledge
graph GD, the maximum length of searchable paths K and the
number of standard queries N , the goal is to learn a model
and identify a candidate set {(qn, pn) | 0 ≤ n < N } for each
customer question t ∈ T , where pn denotes the probability of
query qn. Thus, for every pair (t, qn), we need to have a path
pk (t, qn) with 2 ≤ k ≤ K .

C. DEFINITIONS
Definition 1 (k-Hop Path): A k-hop path from entity e0 to

entity ek is a sequence of k + 1 entities with k intermediate
relationships. This is expressed as pk (e0, ek ) = {e0

r1
←→

e1
r2
←→ . . .

rk
←→ ek}, among them ei−1

ri
←→ ei indicated

as (ei−1, ri, ei) ∈ GD or (ei, ri, ei−1) ∈ GD, i ∈ [k].
Definition 2 (1-Hop Scoring Function): We define a scor-

ing function f to compute the degree to which the entity
e matches the entity ek , where the relationship r is a

FIGURE 2. An example of a multi-turn dialogue knowledge graph.

relationship along the k-hop path of the entity e to the entity
ek .

f (e, ek ) = 〈e+ r, ek 〉 + bek (1)

IV. METHODOLOGY
We construct a knowledge graph for the multi-turn dialogue
based on the entities and relations shown in Table 2. All
user questions (or utterances), standard queries (which serve
as the intents of dialogues), sub-intents of dialogues which
include business units and demands can become entity nodes
in such a graph. The goal is to find the correct query for the
overall dialogue. This entails devising a strategy to pursue
paths emanating from the user question node and leading
to an appropriate query node. The searching path which
begins from the first turn, passes through the following turns
and finally reaches the query can be modeled as a Markov
Decision Process. Hence, we rely on reinforcement learning
for navigation along the graph towards the correct query node.

A. DIALOGUE GRAPH CONSTRUCTION
From the multi-turn dialogue, we induce a knowledge graph
(cf. Figure 2) with edges connecting 4 types of entities. For
every customer utterance node, there are multiple paths in
the graph that can reach the standard query nodes. We assess
which standard query has the highest probability based on
scores within the knowledge graph.

First, in order to construct a knowledge graph, we begin by
extracting triples of the form (e, r, e′) from the data and add
them to the knowledge graph. For instance, according to the
Table 2, ‘‘Credit Pay’’ is a business unit entity (business b2 in
Figure 2), while ‘‘stolen’’ is a Demand entity (Demand d2 in
Figure 2), and the predicate ‘‘includes’’ is the relationship for
the edge linking these two nodes.

1) VECTOR REPRESENTATIONS
While it is possible to apply structured queries on a knowl-
edge graph, to make full use of the rich information that it
provides, we additionally learn vector representations. We
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exploit the elegant TransE method [38] to learn such rep-
resentations. For the embedding layer, the embeddings for
query nodes, business nodes and demand nodes are initialized
randomly based on a certain distribution, and then updated in
the process of training TransE.

2) BERT QUESTION TEXT EMBEDDINGS

Edemand,Ebusiness,Equery,Equestion
= TransE(Edemand,Ebusiness,Equery,Equestion) (2)

with embedding matrix initialization

Edemand = Embeddingrandom(Vdemand)

Ebusiness = Embeddingrandom(Vbusiness)

Equery = Embeddingrandom(Vquery)

Equestion = EmbeddingBERT(Vquestion) (3)

However, considering only structural information, the embed-
dings for question entities would remain overly coarse-
grained and uninformative in light of the rich semantic
structure of linguistic utterances. Hence, in order to learn
richer embeddings capturing fine-grained semantic nuances,
we invoke the pretrained BERT model [5] for embedding
initialization, and fine-tune it in the process of training the
TransE model. Overall, the process of training TransE can be
summarized as Equation 2 and Equation 3.

B. MULTI-TURN DIALOGUE PATH SEARCHING
ALGORITHMS
In order to identify the user intent by mapping it to a standard
query, we need to find the correct path in the knowledge
graph from the user question node to such a query node.
We design multi-turn dialogue path searching algorithms
including backward tracking strategy and forward tracking
strategy. We formalize the forward tracking strategy as Algo-
rithm 1 and propose the algorithmic procedure using forward
tracking strategy formalized as Algorithm 2 by considering
the specific multi-turn property of the data.

While searching for paths, we rely on reinforcement learn-
ing to select the next node in the knowledge graph (cf. blue
lines). For a multi-turn dialogue, the shorter the search path,
the more reliable its result tends to be. Hence, we define a
threshold σ as the maximum number of search steps. When
using forward tracking strategy, we start searching the path
from the utterance in the first turn of the multi-turn dia-
logue. For a three-turn dialogue {question1 → question2 →
question3}, for instance, we set the node question1 as the
starting point when searching for a query node. However,
it is possible that the query node is not reached when limiting
the number of steps. If the path searching process stops at a
certain step, the multi-turn dialogue will fail to return a query.
In this case, we forward track to search from question2.
Inversely, when using backward tracking strategy, we start

searching the path from the utterance in the last turn of
the multi-turn dialogue. If the query node is not reached,

we backward track to search from the previous turn of the
multi-turn dialogue.

For this path selection part, the time complexity for each
dialogue is O(T ∗ L ∗ A), the T represents the maxi-
mum turns of the dialogue, the L represents the maxi-
mum length of path when system search query nodes, and
the A represents maximum out-degree in the knowledge
graph.

Algorithm 1 Multi-Turn Forward Tracking Path Searching
Input: The dialogue questions list, T ;
Input: The query set, Q;
Input: The maximum searching steps, σ ;
1: Initialize l = length(T ), k = 0
2: while k < l do
3: current_node = T [k]
4: s = 1 F start with step 1
5: while s ≤ σ do
6: current_node =

search_next_node(current_node) F find next node in
KG

7: s++ F next step
8: if current_node ∈ Q then
9: return current_node F find the target node
10: end if
11: end while
12: k++ F need forward tracking
13: end while
14: return ∅

C. REINFORCEMENT LEARNING
The goal of our reinforcement learning is to pursue suit-
able paths in the knowledge graph. Algorithm 2 provides
the details of the proposed reinforcement learning empow-
ered PGMD algorithm, which extends the path searching
process.

1) POLICY/VALUE NETWORK
At every step, the reinforcement learning model requires the
state of the current search path to select the best action to take.
An important property for multi-turn dialogue is that the dif-
ferent turns adhere to an underlying ordered time sequence.
For instance, the query nodes for two partial dialogues
question1 → question2 versus question2 → question1 may
be entirely different. Thus, the network needs to account for
this temporal order property of the data. We use an Actor-
Critic algorithm, with the structure of the network as given
in Figure 3. An BiLSTM network with attention mechanism
is invoked to extract path features. We further concatenate the
embedding of the historical nodes with the BiLSTM model’s
output as a fusion layer, and then pass it through two fully-
connected layers. Finally, the probabilities of actions in the
action space are emitted by the actor layer. The effect of the
network is evaluated by the critic layer.
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Algorithm 2 Policy Guided Multi-Turn Path Reasoning
(PGMD)
Input: The dialogue questions list, T ;
Input: The query set, Q;
Input: The maximum searching steps, σ ;
Output: Reward r , path node set P
1: Initialize l = length(T ), k = 0
2: while k < l do
3: P = φ F path node set
4: i = 0
5: current_node = T [k]
6: while i ≤ k do
7: P← T [i] F save T [i] to P
8: end while
9: s = 1 F start with step 1
10: while s ≤ σ do
11: s = State(P) F get state from path
12: A = kg(current_node) F get action space from

KG
13: Ã = pruning(A | f ) F action pruning
14: next_node = PGMD(s, Ã) F determine next

action
15: current_node = next_node
16: P← current_node F save current_node to P
17: s++ F next step
18: if current_node ∈ Q then
19: r = Reward(current_node | f ) F calculate

reward
20: return r,P
21: end if
22: end while
23: k++ F need forward tracking
24: end while
25: return ∅

2) STATES
The state is the input of the policy network and provides infor-
mation about the current path. To avoid overfitting, we only
consider partial paths. Define k as the upper-bound of the
historical nodes used to make decision. State st at step t is the
start node embedding Eq and the path embedding starts from
the current node et to the previous k nodes et−k+1 including
edges: (Eet−k+1 ,Ert−k+2 . . . ,Ert ,Eet ) (Ee is the embedding of
the entity e, and Er is the embedding of the predicate r).

3) ACTIONS
For a current node et at step t , the complete action space
includes all the outgoing connected nodes of et (but excluding
historical nodes). Some nodes in the graph may have a large
out-degree. Owing to efficiency considerations, we propose
an action pruning strategy. We compute scores of node et
with all nodes in the complete action space A according to
the 1-hop scoring function f (et , a), a ∈ A. Given δ as the
upper-bound of the size of the action space, we eliminate low-

FIGURE 3. The policy network.

scoring actions after sorting. The pruned action space Ã is
defined in Equation 4.

Ã = {(et , a) | |(et , a)| ≤ δ, a ∈ A} (4)

4) REWARD
During path searching in the KG, it is not possible to confirm
whether the action will ultimately reach the correct target
before the final step. Hence, we cannot only use a binary
reward to indicate whether the agent has reached the target.
Instead we propose a soft reward formula when the agent
reach query nodes except the target. As the number of nodes
of each type on the path may vary, and we wish for each
type of node to play the same role, we consider as the reward
the macro-averaged matching score between nodes on the
path and the query node. The reward function is defined as
Equation 5.

r =



1
3
[
1
n0

n0∑
i=1

max(0,
f (ei0, et )

maxq∈Q f (ei0, q)
)

+
1
n1

n1∑
j=1

max(0,
f (ej1, et )

maxq∈Q f (e
j
1, q)

)

+
1
n2

n2∑
k=1

max(0,
f (ek2, et )

maxq∈Q f (ek2, q)
)] if et ∈ Q

and et 6= er
1 if et = er
0 otherwise.

(5)

whereQ is a set of query entities,B is a set of business entities,
D is a set of demand entities, and T is a set of question entities.
e0, e1 and e2 represent nodes of searching path, and e0 ∈ D,
e1 ∈ B, e2 ∈ T . er is the query node corresponding to the
multi-turn dialog. n0 is the number of demand nodes of the
path, n1 is the number of business nodes of the path, n2 is the
number of question nodes of the path.
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TABLE 3. Data sources used by baselines.

V. EXPERIMENTAL RESULTS
A. SETTINGS
1) DATASET
The details of the dataset were already given in Section III.
From the total of 120, 000 call dialogues, we randomly
selected one-tenth as the test set, one-tenth as the valid set
and the remaining eight tenths for training.

2) DATA PROTECTION STATEMENT
1) The data used in this research does not involve any

Personal Identifiable Information (PII).
2) The data used in this research were all processed

by data abstraction and data encryption, and the
researchers were unable to restore the original data.

3) Sufficient data protection was carried out during the
process of experiments to prevent the data leakage
and the data was destroyed after the experiments were
finished.

4) The data is only used for academic research and sam-
pled from the original data, therefore it does not rep-
resent any real business situation in Ant Financial Ser-
vices Group.

3) EVALUATION METRICS
The experiments target at evaluating whether our algorithm
can predict the correct query for a user-provided questions
within the dialogue. To this end, we computemacro-Precision
(Prec.), macro-Recall (Rec.) and macro-F1 to evaluate the
performance of the top-1 result. There are also scenarios in
the company requiring multiple queries to be selected. Thus,
we additionally computed Precision@K , which counts a
result as correct when among the top-rankedK result queries,
there is at least one match with the ground-truth query.

4) IMPLEMENTATION DETAILS
In our experiments, we relied on a maximum searching step
limit σ = 3, an upper-bound of historical state nodes k = 3,
and an upper-bound δ = 100 for the action space. We set the
dimensionality of the word embeddings to 100. To increase

the diversity of paths, we set the dropout rate to 0.5, and use
SGD2 optimizer.We train the model for 10 epochs, setting the
learning rate to 0.0001, and adopting a batch size of 64, with
the entropy loss weight set to 0.001. Especially, the SGD2

refers to the SGD optimizer with 0.9 momentum. We have
presented the performance when we set different parameters
which are the most important parameters including optimizer,
maximum searching step limit and upper-bound for action
space in the paper Section V-C, Section V-G and Section V-F,
and select the parameters corresponding to the best result as
the configuration. As for other parameters such as dimension-
ality of word embedding [1], dropout rate [17], learning rate
[4], batch size [4], upper-bound of historical state nodes [4],
entropy loss weight [17], are set according to the previous
work.

B. BASELINES
We compare the proposed PGMD against both recommender
systems and text classification methods. As the baselines
are not specifically designed for our problem, they rely on
varying subsets of data sources. Details of the data sources
used by every baseline could check Table 3.
BERT-Classification:Weuse the pre-trained BERT vectors

of the questions for the task of intent classification.
BPR [39]: The Bayesian Personalized Ranking approach

for recommendation, which is one of the state-of-the
art ranking-based method for top-N recommendation with
numerical ratings. and we use BPR-MF for model learning.
DeepCoNN [40]: The Deep Cooperative Neural Networks

model for recommendation, which models users and items
jointly using review text for rating prediction.
KGCN [10]: The Knowledge Graph Convolutional Net-

work for recommendation, which mines associated attributes
between items on knowledge graph.
KTUP [41]: A Joint Knowledge Graph Recommender,

which transfers the relation information in knowledge graph
in order to figure out the reason why an user prefers an item.
JRL [42]: A Joint Representation Learning(JRL) frame-

work based onmulti-viewmachine learning, which is capable
of incorporating heterogeneous information sources for top-
N recommendation by learning user/item representations in a
unified space.
Semhash-Classification [43]: We use Semantic Hashing

vectors of the questions for the task of intent classification.
DeepPath [1]: A method for knowledge graph reasoning,

which includes a reward function that takes the accuracy,
diversity and efficiency into consideration.
MINERVA [16]: An reinforcement learning method for

knowledge reasoning, which navigates the agent based on the
input query to identify predictive paths in the graph.
MultiHopKG [17]: An approach to reason in knowledge

graph, which reduces the influence of false negative super-
vision and weakens the sensitivity to spurious paths of on-
policy RL.
PGPR: We adapt PGPR to our problem by removing the

BiLSTM and attention mechanism in the policy/value net-
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TABLE 4. Statistics of epoch 1, 5 and 10 for backward (Right) and forward (Left) tracking path searching.

TABLE 5. Evaluation results of different optimizers during training.

work (cf. Figure 3), but only keeping the concatenation layer
of historical nodes.

C. OPTIMIZER
We analyze the performance when using different optimizer
during training. Five optimizers are compared in the Table 5
including Adam, SGD1, SGD2, RMSProp and AdaGrad .
Particularly, the SGD1 refers to the SGD optimizer with no
momentum, while the SGD2 represents the SGD optimizer
with 0.9 momentum. The alpha parameter for RMSProp opti-
mizer is set as 0.9. The time(min) refers to the average cost
time for every epoch in the training procedure. By using the
SGD2, the system performs the best, but costs too much train-
ing time. One explanation is that the momentum increases
the rate of convergence and helps the optimizer avoid the
local optima value.When using Adam, the performance is not
the best, but less time cost. Thus Adam is an optimizer with
excellent comprehensive performance in our experiments.
The application of adaptive learning rate allows the loss
function to converge quickly. However, although Adam has
an excellent convergence speed at the early stage of training,
the final generalization ability of the model is not as good as
the model trained with SGD.

D. QUANTITATIVE ANALYSIS
In order to compare PGMD against other baseline models
exhaustively, we conduct an extensive quantitative analysis of

TABLE 6. Evaluation results of top-1, top-2 and top-3.

these models. First, we train the model for 10 epochs with the
default settings mentioned above including SGD2 optimizer,
and observe the results of different models’ top-1, top-2, top-
3. The best values for every model are reported in Table 6.
Overall, PGMD performs better than other baselines in pre-
cision, recall, and F1 of the results.

The results of DeepCoNN and KGCN are dismal. This
might be because DeepCoNN relies on user reviews and
item scores for training. KGCN, meanwhile, builds a knowl-
edge graph around the item and the corresponding attributes.
It relies on the user’s previous interactions with the item to
update the embedding matrix of users and achieve the effect
of ‘‘knowing’’ a particular user. However, for our dialogue
dataset, text utterances are often not repeated. Thus, the user
information is limited to that given by the BERT vector
representation of the dialogue text. As there is little duplicate
text in the data, it is difficult to learn relationships between a
text item and a target query node. Thus, every dialogue shows
up as introducing a new user at test time, severely hampering
the result quality.
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TABLE 7. Evaluation results of different action space during training.

E. EVALUATION OF PATH SEARCHING STRATEGIES
For further analysis, we compare our forward tracking strat-
egy during path searching with a backward tracking one. We
trained the model with SGD2 optimizer and other default set-
tings. The total numbers of multi-turn dialogues with respect
to different turns of the dialogue is listed in Table 4. The
table also provides statistics about which question nodes
the algorithm could find query nodes for during the path
search. Dialogue for which it is unable to find the query
node are referred to as invalid dialogues when reasoning path.
‘‘Que’’ refers to question nodes in the tables. For example,
the value 6, 822 in Table 4 signifies that there are 6, 822 3-
turn dialogues for which the query node is found at the second
turn among all the 42, 175 3-turn dialogues.

The experimental results show that by using the forward
path searching strategy the number of searches from the
previous question is more than the number of searches from
the next question. In contrast, with the backtracking path
search strategy, the number of searches from the next question
is more than the number of searches from the previous one.
The model using the backward tracking strategy attains a
lower accuracy than that adopting the forward tracking strat-
egy. One explanation is that for a multi-turn dialogue in our
scenario, a new turn usually serve as additional information of
the previous turn and doesn’t contain complete information.
When using forward tracking strategy, it is easier for the
system to find the target query node based on the complete
information. In contrast, when using backward tracking strat-
egy, it is possible for the system to find wrong query node
because of the incomplete information contained of the later
turn.

F. INFLUENCE OF ACTION PRUNING STRATEGY
The action space has an important effect on the result. In this
experiment, we evaluated the result of PGDM with differ-
ent sizes of trimming action spaces. When the number of
actions is lager than the upper-bound δ, the action space
will be adjusted according to the scoring function. Higher
score actions are more likely to be saved, the lower score
actions will be removed from the action space. We want
to explore whether a larger action space, even we keep all
the actions, can help the system perform better than smaller
action space. Because the Adam optimizer is the most widely
used optimizer, we analyze the performance of system using
different action space with Adam optimizer and SGD2 opti-
mizer. The size of the trimmed action space varies from 100 to

TABLE 8. Evaluation results of different max. path search lengths.

FIGURE 4. Examples.

500, with a step size of 100. We can observe from Table 7
that when using a smaller pruning action space, it is more
possible to get a better performance. The results indicate that
it is effective to apply the action pruning strategy by 1-hop
score function. Therefore when using smaller pruning action
space, the system trim more noisy nodes, which increases the
probability of reaching the correct query nodes.

G. HISTORY REPRESENTATIONS
The maximum length of the path when the system searching
query node is an important hyper-parameters. We compared
the use of different maximum path searching lengths, con-
sidering 3, 4, and 5 as the maximum lengths with Adam
optimizer and SGD2 optimizer. The above Table 8 provides
the results for different maximum lengths. We find that with
3 as the maximum path length, the system performs best. One
explanation is that though longer searching paths directed
to more query nodes, they lead to less reliable predictions.
Therefore when define the maximum path length, we need to
consider the trade off between the reliability of the predictions
and the searching range of query nodes.

VI. CASE STUDY ON PATH REASONING
In order to visually understand how our model allows for
interpretability, we present a case study based on the previ-
ous experimental results. Figure 4 illustrates how to use the
predicted path to explain the process of intent recognition
through the paths. For the first example, the question value
‘‘I don’t know why there is a default on my Credit Account.’’
has the Demand value ‘‘Max term’’, while the question value
‘‘Yes I used to default once but not this time. I want to ask that
why I cannot use my credit pay and how to solve this issue?’’
also has the Demand value ‘‘Max term’’, and the query of

85356 VOLUME 8, 2020



K. Yang et al.: Reinforcement Learning Over Knowledge Graphs

the question value ‘‘Yes I used to default once but not this
time. I want to ask that why I cannot use my Credit Pay and
how to solve this issue?’’ is query ‘‘Default issues’’. Thus,
we can infer that the query for the question ‘‘I don’t know
why there is a default on my credit account.’’ is also query
‘‘Default issues’’.

For the second example, the question value ‘‘Why I still
cannot use my Credit Pay after repaying the debts.’’ has
the Business value ‘‘Pay for Credit Pay advanced’’, and the
question value ‘‘I didn’t register any Credit Pay account,
but I was informed that I borrowed money from it and
then paid back to it.’’ also has the Business value ‘‘Pay
for Credit Pay advanced’’, and the query of the question
value ‘‘I didn’t register any Credit Pay account, but I was
informed that I borrowed money from it and then paid back
to it.’’ is query ‘‘Repaying issues’’, then we can think the
query of the question value ‘‘Why I still cannot use my
Credit Pay after repaying the debts’’ is also query ‘‘Repaying
issues’’.

For the third example, the question value ‘‘I lost my phone,
and I can’t log in my credit account.’’ can go on the dia-
log question value ‘‘I cannot log in my credit account now.
How can I pay the bill?’’, while the dialog question value
‘‘I cannot log in my credit account now. How can I pay
the bill?’’ can go on the dialog question value ‘‘When I
log in the credit account, It says that the account doesn’t
exist.’’, and the query of the dialog question value ‘‘When
I log in the credit account, It says that the account doesn’t
exist.’’ is query ‘‘Login issues’’, then we can think that
the query of the question value ‘‘I lost my phone, and
I can’t log in my credit account.’’ is also query ‘‘Login
issues’’.

VII. CONCLUSION
In this paper, we present a novel explainable approach for
intent identification in multi-turn dialogue. Our novel PGMD
approach relies on a reinforcement learning neural network to
navigate an query-specific ad hoc knowledge graph in pursuit
of relevant query nodes, via our order-aware forward tracking
path searching algorithm for multi-turn dialogue. We con-
ducted a series of experiments demonstrating that PGMD is a
powerful method for multi-turn dialogue intent identification
providing intuitive explanations and outperform state-of-the-
art related work. We believe our method can be extended to
dynamic knowledge graphs to deal with dynamic problems
that new knowledge will appear in the future. As new nodes
and edges being added in the knowledge graph, some existing
nodes and edges are probably removed from the knowledge
graph. In order to get the embedding of nodes and edges
efficiently once updating, we could use DKGE model [44]
which can achieve online embedding learning to get the
updated knowledge graph embedding.
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