
D-HYPR: Harnessing Neighborhood Modeling and Asymmetry
Preservation for Digraph Representation Learning
Honglu Zhou

Rutgers University

Piscataway, NJ, US

honglu.zhou@rutgers.edu

Advith Chegu

Rutgers University

Piscataway, NJ, US

ac1771@rutgers.edu

Samuel S. Sohn

Rutgers University

Piscataway, NJ, US

sss286@cs.rutgers.edu

Zuohui Fu

Rutgers University

Piscataway, NJ, US

zuohui.fu@rutgers.edu

Gerard de Melo

HPI / University of Potsdam

Potsdam, Germany

gerard.demelo@hpi.de

Mubbasir Kapadia

Rutgers University

Piscataway, NJ, US

mk1353@cs.rutgers.edu

Figure 1: Embedding space visualization using PCA projection. Our method D-HYPR leads to the best class separation. Each dot
represents a node, and colors reflect the ground truth class labels of nodes, which are best appreciated when zooming in.

ABSTRACT
Digraph Representation Learning (DRL) aims to learn representa-

tions for directed homogeneous graphs (digraphs). Prior work in

DRL is largely constrained (e.g., limited to directed acyclic graphs),

or has poor generalizability across tasks (e.g., evaluated solely on

one task). Most Graph Neural Networks (GNNs) exhibit poor per-

formance on digraphs due to the neglect of modeling neighbor-

hoods and preserving asymmetry. In this paper, we address these

notable challenges by leveraging hyperbolic collaborative learning
from multi-ordered and partitioned neighborhoods, and regular-

izers inspired by socio-psychological factors. Our resulting formal-

ism, Digraph Hyperbolic Networks (D-HYPR) – albeit conceptually

simple – generalizes to digraphs where cycles and non-transitive

relations are common, and is applicable to multiple downstream

tasks including node classification, link presence prediction, and

link property prediction. In order to assess the effectiveness of

D-HYPR, extensive evaluations were performed across 8 real-world

digraph datasets involving 21 prior techniques. D-HYPR statistically

significantly outperforms the current state of the art. We release

our code at https://github.com/hongluzhou/dhypr

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/3511808.3557344

CCS CONCEPTS
• Computing methodologies → Neural networks.

KEYWORDS
graph neural networks, directed homogeneous graphs, benchmark,

link prediction, node classification, edge attribute prediction

ACM Reference Format:
Honglu Zhou, Advith Chegu, Samuel S. Sohn, Zuohui Fu, Gerard de Melo,

and Mubbasir Kapadia. 2022. D-HYPR: Harnessing Neighborhood Model-

ing and Asymmetry Preservation for Digraph Representation Learning. In

Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3511808.3557344

1 INTRODUCTION
Directionality is a fundamental characteristic inherent in a multi-

tude of real-world graphs, including social networks, web page net-

works, and citation networks [36]. Digraph Representation Learn-

ing (DRL) aims to learn representations for directed homogeneous

graphs (digraphs) [48, 58]. Early DRL techniques include factorization-

based approaches such as HOPE [36] and ATP [44], and random

walk-based approaches such as APP [61] and NERD [19]. However,

these methods do not scale to large digraphs, or are sensitive to

outliers and noise. In recent years, Graph Neural Networks (GNNs)

have achieved immense success on a wide range of tasks [62]. How-

ever, GNNs primarily aim at representation learning for undirected
graphs. There are two notable challenges that hinder their effec-

tiveness on digraphs.

2732

https://github.com/hongluzhou/dhypr
https://doi.org/10.1145/3511808.3557344
https://doi.org/10.1145/3511808.3557344

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Honglu Zhou et al.

Challenge 1: Neighborhood Modeling. The neighborhoods
of a node may possess unique semantics. For instance, in social

networks, in-neighbors are commonly known as followers, while

out-neighbors are accounts that the user follows. In citation net-

works, in-neighbors of a node can be existing works cited by a paper

by the time the camera-ready version of the paper is submitted,

whereas out-neighbor connections arise subsequent to the paper

coming out. Existing GNN techniques [8, 23, 51, 63] transform di-

graphs to undirected graphs to enable running experiments, which

simplifies the learning problem, or only consider the direct out-

neighbors in the graph convolution. Thus, they lose characteristics

of the original structure, resulting in misleading message passing

and ultimately subpar results on digraph-specific problems.

Challenge 2: Asymmetry Preservation. Due to the inherent

symmetry of popular measures, such as the inner product or dis-

tance in the embedding space, which produces the same scores

for the node pair (𝑖, 𝑗) and (𝑗, 𝑖), inner-product- or distance-based
learning objectives used by popular GNNs are unsuitable for cap-

turing the asymmetric connection probabilities for node pairs in

digraphs [40]. Applications based on link prediction or graph topol-

ogy learning are particularly affected when models fail to preserve

digraph structural asymmetry.

Recently, spectral-based DRL GNNs [31, 48, 49, 58] have been

proposed to address Challenge 1 with respect to modelling neigh-

borhoods for digraphs. However, the learned filters from these

methods depend on the Laplacian eigenbasis, which is tied to a

graph’s structure [47]. Models trained on a specific structure can-

not be directly applied to graphs with different structures [55].

Separately, to address Challenge 2, approaches such as viewing

directions of edges as a kind of edge feature [14], or parametrizing

the node pair likelihood function by a neural network [2, 42] have

been proposed, but these techniques fail to consider Challenge 1.
Moreover, prior DRL techniques are often constrained to directed

acyclic graphs (DAGs) [12, 45, 46], are transductive [12, 43, 45, 49],

or have poor generalizability across tasks. For example, some stud-

ies provide experimental evidence for a single task only – e.g., link

prediction as in [43] or node classification as in [31, 49].

We propose DigraphHYPERbolic Networks (D-HYPR) to fully
address these limitations. To overcome Challenge 1, D-HYPR uti-
lizes hyperbolic collaborative learning from multi-ordered and parti-

tioned neighborhoods. For Challenge 2, D-HYPR takes advantage of
self-supervised learning, using asymmetry-preserving regularizers

supported by well-established socio-psychological theories [32, 33].

Specifically:

(1) Neighborhood Modeling with Partitioned and Larger Receptive

Fields: by leveraging collaborative learning from multi-ordered

four canonical types of neighborhoods (Fig. 2 (a)), D-HYPR mod-

els the distinct node neighborhoods, and captures the local

directed graph characteristics.

(2) Neighborhood Modeling with a non-Euclidean Space: D-HYPR
learns node representations of real-world digraphs (which ex-

hibit scale-free or hierarchical structures) in hyperbolic space

to avoid distortion of node neighborhoods.

(3) Asymmetry Preservation with Regularizers: motivated by two

decomposed causes of link formation, homophily [32] and pref-
erential attachment [33], we employ two regularizers in training

D-HYPR, which are used in a self-supervised fashion to account

for each of the two driving forces of link formation. These

regularizers lead to performance gains in downstream tasks.

(4) Flexibility due toMessage-passing-basedGNNFormalism: D-HYPR
falls into the category of message-passing-based GNNs that

capture both graph structure and semantics. D-HYPR has the

capability to inductively learn representations for general di-
graphs that potentially contain cycles, non-transitive relations,

outliers, and noise.

Our contributions are three-fold: (1)We propose D-HYPR for DRL.
D-HYPR considers the unique node neighborhoods in digraphs with

multi-scale neighborhood collaboration in hyperbolic space. D-HYPR
respects asymmetric relationships of node-pairs, which is guided by

sociopsychology-inspired regularizers. (2)We perform extensive

benchmarking experiments across 8 real-world digraph datasets.

Our evaluation involves 4 tasks and 21 prior methods. Results

demonstrate the significant superiority of D-HYPR against the state

of the art. (3) D-HYPR generates meaningful embeddings in very

low dimensionalities. This added benefit is desirable for large-scale

real-world applications by efficiently saving space while preserving

effectiveness.

2 RELATEDWORK
Graph Representation Learning (GRL). GRL methods have

evolved from matrix factorization [18], graph kernels [41], and ran-

dom walk-based transductive models [37], into GNNs [22], which

have greatly surpassed these prior methods in numerous exper-

iments. Interested readers may refer to comprehensive reviews

[5, 25, 55, 62] for further details. Current popular GRL approaches [3,

3, 8, 22, 51, 59, 63] have primarily considered undirected homo-

geneous GRL. Although certain recent GNNs can be applied to

digraphs, e.g., the Graphormer [57] with its Transformer-based

design [50], these techniques have been validated solely by experi-

ments on undirected graphs [58], and are computationally imprac-

tical for large-scale digraphs.

Directed Graph Embedding. There are comparatively few stud-

ies that address DRL. HOPE [36] captures asymmetric transitivity

but depends on a low rank assumption of the input, and fails to

generalize to a variety of tasks [19]. APP [61] captures asymmetry

by relying on random walks. ATP [44] removes cycles in digraphs

beforehand and then leverages factorization. NERD [19] extracts

a source and a target walk, and employs a shallow neural model.

DGCN [49], DiGCN [48] and MagNet [58] are recent GNNs that ex-

tend spectral-based GCNs [22] to digraphs, but are tied to a graph’s

Laplacian. DAGNN [46] is proposed for DAGs by injecting a DAG-

specific inductive bias—partial ordering—into the GNN design.

Hyperbolic Embedding Learning.Most non-Euclidean embed-

ding techniques [13, 16, 28, 34, 35, 43] only account for the graph

structure and do not leverage node features. In contrast, we consider
the general DRL setting of seeking to capture both digraph structure
and attributes, and propose a message-passing-based GNN with an

inductive learning capability.

HGCN [8] and HGNN [29] were proposed concurrently to gener-

alize GNNs to take advantage of the strength of hyperbolic geome-

tries. Other hyperbolic GNNs include Constant Curvature GCNs [1]

that provide a mathematically grounded generalization of GCNs,

2733

D-HYPR: Harnessing Neighborhood Modeling and Asymmetry Preservation for Digraph Representation Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

HAT [59] that studies hyperbolic GNN with an attention mecha-

nism, GIN [63] that draws on both Euclidean and hyperbolic geome-

tries, and so on [9, 10, 60]. Our work is built upon these prior efforts

on hyperbolic GNNs for undirected graphs, to address challenges

associated with digraphs.

3 PRELIMINARIES
Definition 1. Digraph Representation Learning [48, 58]. Let

G = (V, E) be a homogeneous graph with vertex setV and edge

set E. Each edge 𝑒 ∈ E is an ordered pair 𝑒 = (𝑖, 𝑗) between
vertices 𝑖 and 𝑗 . The adjacency matrix of G can be denoted as

𝐴 = {0, 1} |V |× |V |
. G is a digraph when ∃(𝑖, 𝑗), 𝐴𝑖, 𝑗 ≠ 𝐴 𝑗,𝑖 .

Nodes are described by a feature matrix 𝑋 0,𝐸 ∈ R |V |×𝑑
, i.e., each

node 𝑖 ∈ V has a 𝑑-dimensional Euclidean feature x0,𝐸
𝑖

. The super-

script
𝐸
indicates that the vector lies in a Euclidean space, while

𝐻

denotes a hyperbolic vector. 0 denotes the input layer.

DRL is an effective and efficient solution for digraph analytics.

The efficiency is achieved by converting the adjacency-matrix-based

data into low-dimensional embeddings. Thus, the goal of DRL is to

learn a mapping

𝑓 :

(
V, E,

(
x0,𝐸
𝑖

)
𝑖∈V

)
→ 𝑍 ∈ R|V|×𝑑 ′

(1)

that maps nodes to low-dimensional (𝑑′ ≪ |V|) embedding vectors.

These should capture both structural and semantic information and

be valuable for downstream tasks.

Definition 2. The Poincaré BallModel.1 The Poincaré ball model [13](
D𝑛𝑐 , 𝑔

𝑐
)
is defined by the 𝑛-dimensional manifold D𝑛𝑐 = {𝑥 ∈ R𝑛 :

𝑐 ∥x∥ < 1} equipped with the Riemannian metric:𝑔𝑐x = 𝜆2x𝑔
𝐸
, where

𝜆x := 2

1−𝑐 ∥x∥2 , 𝑔
𝐸 = I𝑛 is the Euclidean metric tensor, and 𝑐 > 0 (we

refer to −𝑐 as the curvature). D𝑛𝑐 is the open ball of radius 1/
√
𝑐 . The

connections between hyperbolic space and tangent space are estab-

lished by the exponential map exp
𝑐
x : TxD𝑛𝑐 → D𝑛𝑐 and logarithmic

map log
𝑐
x : D𝑛𝑐 → TxD𝑛𝑐 :

exp
𝑐
x (v) = x ⊕𝑐

(
tanh

(√
𝑐
𝜆𝑐x ∥v∥

2

)
v

√
𝑐 ∥v∥

)
(2)

log
𝑐
x (y) =

2

√
𝑐𝜆𝑐x

tanh
−1

(√
𝑐 ∥−x ⊕𝑐 y∥

) −x ⊕𝑐 y
∥−x ⊕𝑐 y∥ (3)

where x, y ∈ D𝑛𝑐 , v ∈ TxD𝑛𝑐 , and ⊕𝑐 denotes Möbius addition, and

x ⊕𝑐 y :=

(
1 + 2𝑐 ⟨x, y⟩ + 𝑐 ∥y∥2

)
x +

(
1 − 𝑐 ∥x∥2

)
y

1 + 2𝑐 ⟨x, y⟩ + 𝑐2 ∥x∥2 ∥y∥2
. (4)

The Möbius scalar multiplication (Eq. 5) and Möbius matrix multi-
plication of x ∈ D𝑛𝑐 \{0} (Eq. 6) are

𝑟 ⊗𝑐 x :=
1

√
𝑐
tanh

(
𝑟 tanh−1 (

√
𝑐 ∥x∥)

) x
∥x∥ (5)

𝑀 ⊗𝑐 x := (1/
√
𝑐) tanh

(
∥𝑀x∥
∥x∥ tanh

−1 (
√
𝑐 ∥x∥)

)
𝑀x
∥𝑀x∥ (6)

where 𝑟 ∈ R and 𝑀 ∈ R𝑚×𝑛
. The induced distance function on(

D𝑛𝑐 , 𝑔
𝑐
)
is given by

𝑑D𝑛
𝑐
(x, y) = (2/

√
𝑐) tanh−1

(√
𝑐 ∥−x ⊕𝑐 y∥

)
(7)

For a longer introduction of hyperbolic or non-Euclidean geometry,

we refer readers to relevant previous work [4, 6, 8, 13, 39].

1
Our method is compatible with other non-Euclidean embedding models.

4 METHODOLOGY
Driven by the goal of addressing the challenge of Neighborhood

Modeling and Asymmetry Preservation in digraphs, we propose

D-HYPR (Fig. 2 (b)), which leverages hyperbolic collaborative learn-

ing from multi-ordered and partitioned neighborhoods, and self-

supervised learning via asymmetry-preserving regularizers.

Euclidean space does not provide the most powerful or meaning-

ful geometrical representations when input data exhibits a highly

complex non-Euclidean latent anatomy, as for instance for real-

world digraphs with a scale-free or hierarchical structure [4, 6].

As the volume of nodes grows exponentially with the distance

from a central node, non-Euclidean geometry is more suitable than

Euclidean for embedding such digraphs [28, 39, 43]. Hyperbolic em-

beddings can incur smaller data distortion for real-world digraphs,

which leads to a better representation of the nodes’ local neigh-

borhoods. This motivates our investigation of utilizing hyperbolic

GNNs over Euclidean counterparts as the backbone for DRL.

4.1 Hyperbolic Embedding Learning
To perform message passing in hyperbolic space, the general effi-
cient approach is to move basic operations of hyperbolic space to

the tangent space [59, 63]. Given G and x0,𝐸
𝑖

, we first obtain x0,𝐻
𝑖

by applying exponential map exp
𝑐0

0 (·) to map the Euclidean input

feature x0,𝐸
𝑖

into hyperbolic space with curvature −𝑐0 ∈ R, where
𝑐0 is learned in training. Hyperbolic message passing (Eqs. 8 to 10)

is then performed by multiple layers (forming the Hyperbolic Graph
Embedding Layers in Fig. 2 (b)). The layer is indexed by ℓ , ranging

from 1 to a pre-defined integer 𝑙 .

(1) Hyperbolic Feature Transformation is performed by

mℓ,𝐻
𝑖

=𝑊 ℓ ⊗𝑐ℓ−1 x
ℓ−1,𝐻
𝑖

⊕𝑐ℓ−1 b, (8)

where𝑊 ℓ ∈ R𝐹
ℓ×𝐹 ℓ−1

is the weight matrix, and b ∈ D𝐹
ℓ

𝑐ℓ−1
denotes

the bias (both are learned). We employ a unique trainable curvature

at each layer to obtain a suitable hyperbolic space to account for

different depths of the neural network.

(2) Hyperbolic Neighbor Aggregation.We then leverage the bridging

between the hyperbolic space and the tangent space to perform

neighbor aggregation [59, 63], resulting in hℓ,𝐻
𝑖

∈ D𝐹
ℓ

𝑐ℓ−1
,

hℓ,𝐻
𝑖

= exp
𝑐ℓ−1
0

©­«
∑︁

𝑗 ∈{𝑖}∪N(𝑖)
𝑒𝑖 𝑗 log

𝑐ℓ−1
0

(
mℓ,𝐻

𝑗

)ª®¬ . (9)

N(𝑖) = { 𝑗 : (𝑖, 𝑗) ∈ E} denotes the set of neighbors of 𝑖 ∈ V .

We apply out-degree normalization of 𝐴 (adjacency matrix), i.e.,

𝐷−1
out

(𝐴+ 𝐼), to obtain the aggregation weights for simplicity (while

𝑒𝑖 𝑗 can be computed with different mechanisms such as attention

or leveraging edge attributes if present). 𝐷out is a diagonal matrix

such that element (𝑖, 𝑖) is the sum of row 𝑖 in 𝐴 plus 1. We choose

the tangent space of the origin for efficiency [8].

(3) Non-Linear Activation with Trainable Curvatures. xℓ,𝐻
𝑖

∈ D𝐹
ℓ

𝑐ℓ
,

the output hyperbolic representation of node 𝑖 in layer ℓ is set as

xℓ,𝐻
𝑖

= exp
𝑐ℓ

0

(
𝜎

(
log

𝑐ℓ−1
0

(
hℓ,𝐻
𝑖

)))
. (10)

To smoothly vary the curvature of each layer, in Eq. 10, we first map

hℓ,𝐻
𝑖

to the tangent space with the logarithmic map. A point-wise

2734

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Honglu Zhou et al.

Hyperbolic
Graph

Emedding
Layers

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

Hyperbolic
Neighbor

-Hood
Aggregation

Fermi-Dirac
Decoder

Regularization

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

Gravity
Decoder

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

1

2

9 10 11

3

4
7

13

14

15

12

8

5

6

16 17

18

......

Multi-Ordered Four Canonical Types of Partitioned Neighborhoods

(a)

(b)

Figure 2: (a) Multi-ordered and partitioned neighborhoods. We define four types of 𝑘-order proximity matrix (shown in the
figure with 𝑘 = 1, 2 with respect to node 1) to incorporate the pertinent subsets of neighbors and multi-scale information. (b)
Methodology overview. D-HYPR learns a node representation from each neighborhood in hyperbolic space with Hyperbolic
Graph Embedding Layers. Hyperbolic Neighborhood Aggregation further enables a closer collaboration of neighborhoods. D-HYPR
respects asymmetric relationships of nodes with the hyperbolic Fermi-Dirac and Gravity regularizers.

non-linearity 𝜎 (·) (ReLU in our experiments) and an exponential

map are then used to bring the vector back to the hyperbolic space

with a new learnable curvature −𝑐ℓ .

4.2 Neighborhood Collaborative Learning
Due to the semantics of directed edges, neighbors of a node can be

implicitly partitioned into non-disjoint groups. Consideration of

these neighborhoods is critical for learning a holistic node embed-

ding in a digraph. This is because each neighborhood can reflect a

distinct aspect pertaining to the node [30]. E.g., in a social network-

ing platform, a popular user’s in-neighbors and out-neighbors can

exhibit entirely different degrees of relationship cohesion to this

popular user. Furthermore, users who share common in-neighbors

with this user and those who share common out-neighbors can

reveal additional contexts.

Our method leverages this inductive bias exhibited in real-world

digraphs through collaborative learning among the aforementioned

four canonical types of neighborhoods in hyperbolic space. In addi-

tion, D-HYPR achieves larger receptive fields by taking account of

the impact of multi-ordered neighbors [49, 56]. D-HYPR generates
a representation for each type and order of neighborhoods, each

serving as one representation slice that eventually comprises the

final holistic node embedding by collaboratively learning in the

hyperbolic space. With the neighbor-aggregation-based formalism

(Eq. 9) learning from multi-ordered and partitioned neighborhoods,

D-HYPR is capable to model general digraphs that contain cycles or

non-transitive relations.

Neighbor Partition. Four types of 𝑘-order proximity matrix are

defined (Fig. 2 (a)). Formally, 𝑘-order proximity in terms of:

(1) diffusion in 𝐴𝑘
𝑑𝑖𝑛

,

𝐴𝑘
𝑑𝑖𝑛

(𝑖, 𝑗) = 1
©­«
∑︁
𝑝∈V

𝐴𝑘−1
𝑑𝑖𝑛

(𝑖, 𝑝) · 𝐴1

𝑑𝑖𝑛
(𝑝, 𝑗)ª®¬ (11)

where 𝐴1

𝑑𝑖𝑛
= 𝐴⊺ , · is the inner product and 1 is the indicator

function. 𝐴𝑘
𝑑𝑖𝑛

(𝑖, 𝑗) = 1 if there is a directed path from node 𝑗 to

node 𝑖 of length exactly 𝑘 .

(2) diffusion out 𝐴𝑘
𝑑𝑜𝑢𝑡

,

𝐴𝑘
𝑑𝑜𝑢𝑡

(𝑖, 𝑗) = 1
©­«
∑︁
𝑝∈V

𝐴𝑘−1
𝑑𝑜𝑢𝑡

(𝑖, 𝑝) · 𝐴1

𝑑𝑜𝑢𝑡
(𝑝, 𝑗)ª®¬ (12)

where 𝐴1

𝑑𝑜𝑢𝑡
= 𝐴. 𝐴𝑘

𝑑𝑜𝑢𝑡
(𝑖, 𝑗) = 1 if there is a directed path from

node 𝑖 to node 𝑗 of length exactly 𝑘 .

(3) common in 𝐴𝑘𝑐𝑖𝑛 ,
𝐴𝑘𝑐𝑖𝑛

(𝑖, 𝑗) = 1
©­«
∑︁
𝑝∈V

𝐴𝑘
𝑑𝑖𝑛

(𝑖, 𝑝) · 𝐴𝑘
𝑑𝑜𝑢𝑡

(𝑝, 𝑗)ª®¬ (13)

where 𝑖 ≠ 𝑗 ≠ 𝑝 . 𝐴𝑘𝑐𝑖𝑛 (𝑖, 𝑗) = 1 if node 𝑖 and node 𝑗 have a common

in-neighbor 𝑘 hops away.

(4) common out 𝐴𝑘𝑐𝑜𝑢𝑡 ,

𝐴𝑘𝑐𝑜𝑢𝑡 (𝑖, 𝑗) = 1
©­«
∑︁
𝑝∈V

𝐴𝑘
𝑑𝑜𝑢𝑡

(𝑖, 𝑝) · 𝐴𝑘
𝑑𝑖𝑛

(𝑝, 𝑗)ª®¬ (14)

where 𝑖 ≠ 𝑗 ≠ 𝑝 .𝐴𝑘𝑐𝑜𝑢𝑡 (𝑖, 𝑗) = 1 if node 𝑖 and node 𝑗 have a common

out-neighbor 𝑘 hops away.

Multi-Scale Neighborhood Learning. For a given non-zero integer 𝐾 ,

we compute the four types of 𝑘-order proximity matrix for 𝑘 = 1

to 𝐾 (as a preprocessing step). This enables capturing multi-scale

node proximity and the nodes’ local directed graph characteristics.

These 𝑘-order proximity matrices replace the original adjacency

2735

D-HYPR: Harnessing Neighborhood Modeling and Asymmetry Preservation for Digraph Representation Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

matrix 𝐴 to provide a wider range of neighborhoods to Hyperbolic

Graph Embedding Layers (Fig. 2 (b)).

Neighborhood Aggregation.We then apply Hyperbolic Neighbor-
hood Aggregation to enable a joint assessment of the neighborhoods.

Here, we view the 4𝐾 output hyperbolic vectors from the Hyper-

bolic Graph Embedding Layers as representations of 4𝐾 neighbors
of the anchor node 𝑖 . We consider zfuse

𝑖
, which is the hyperbolic

average of these 4𝐾 vectors, as the initial representation of node 𝑖

before hyperbolic neighborhood collaboration. Subsequently, we

apply Eq. (9) with the learned curvature −𝑐𝑙 from the last hyper-

bolic graph embedding layer 𝑙 , and use equal aggregation weights

1

4𝐾+1 (4𝐾 plus 1 because zfuse
𝑖

itself is included as a neighbor in

order to enforce a skip connection). The resulting output, z𝑙,𝐻
𝑖

, is

the final hyperbolic embedding of node 𝑖 . Hyperbolic Neighbor-

hood Aggregation can encourage a better utilization of neighbor-

hoods by synthesizing intermediate representations learned in a

neighborhood-level in hyperbolic space.

4.3 Self-Supervised Learning with
Asymmetry-Preserving Regularizers

Homophily and preferential attachment are two driving forces of link
formation according to sociopsychological theories. Homophily [32]

refers to the notable role of similarity, often summarized as “birds

of a feather flock together”, and preferential attachment [33] de-

scribes the role of prior connectivity: the link formation likelihood

is asymmetric and determined by individual connectivity. To model

these two decomposed causes of link formation, we invoke two

regularizers to predict directed edges when training D-HYPR, thus
allow it to respect asymmetry in digraph link formation by learning

it as a self-supervised task.

We first adopt the Fermi-Dirac decoder [26] as a regularizer to

reinforce the learning of an appropriate node-pair distance in the

hyperbolic embedding space (to well account for homophily). The

hyperbolic Fermi-Dirac decoder defines the likelihood of a node

pair (𝑖, 𝑗) as 𝑝 (𝑖, 𝑗)𝑓 =
1

𝑒

©­«𝑑D𝑑′
𝑐𝑙

(
z𝑙,𝐻
𝑖

,z𝑙,𝐻
𝑗

)
2

−𝑟ª®¬/𝑡 + 1

, (15)

where 𝑟=2 and 𝑡=1 (default), and 𝑑D𝑑′
𝑐𝑙

(·, ·) is the hyperbolic distance
(Eq. 7).

We further preserve the individual asymmetric node connectiv-

ity by learning an additional 1-dimensional mass for each node.

This design is elegantly derived from Newton’s theory of universal

gravitation: each particle in the universe attracts other particles

through gravity, which is proportional to their masses, and in-

versely proportional to their distance. The learnable node mass

is flexible, and it encompasses many centrality measures, includ-

ing Katz, Betweenness and Pagerank. It is also capable of provid-

ing explainable visualizations [40]. To incorporate this idea into

D-HYPR based in hyperbolic space instead of Euclidean, we map

z𝑙,𝐻
𝑖

to the tangent space of the origin with the logarithmic map

(i.e., z𝑙,𝐸
𝑖

= log
𝑐𝑙

0

(
z𝑙,𝐻
𝑖

)
), and then employ a Euclidean linear layer

to learn𝑚𝑖 ∈ R (mass of node 𝑖). The likelihood of node pair (𝑖, 𝑗)
is computed by

𝑝 (𝑖, 𝑗)𝑔 = 𝛾

(
𝑚 𝑗 − 𝜆 log

(
𝑑

D𝑑′
𝑐𝑙

(z𝑙,𝐻
𝑖

, z𝑙,𝐻
𝑗

)2
))
, (16)

where 𝛾 denotes the sigmoid function, and 𝜆 ∈ R is a hyper-

parameter that weights the relative importance of the symmetric

embedding distance to the asymmetric node relationships. 𝑝 (𝑖, 𝑗)𝑔 ≠
𝑝 (𝑗, 𝑖)𝑔 . Eqs. (16) and (15) both serve as self-supervised regularizers

by minimizing the binary cross-entropy loss with negative sam-

pling to estimate the likelihood of each node pair. However, the

two are placed at different depths of D-HYPR. Specifically, Eq. (16) is
employed one layer after where Eq. (15) is used. Thus, even though

𝑑D𝑑′
𝑐𝑙

(·, ·) also appears in Eq. (16), we find that Eq. (15) provides aux-

iliary guidance for the model to better construct the final hyperbolic

embedding space.

4.4 Time Complexity
The time complexity of the the Hyperbolic Graph Embedding Layer
is 𝑂 (𝐾𝑛𝑑ℓ−1𝑑ℓ +𝐾𝑚𝑑ℓ) where 𝐾 denotes the maximal order of the

𝑘-order proximity matrix. 𝑑ℓ−1 and 𝑑ℓ , respectively, denote the

dimensionality of input and output features of layer ℓ . 𝑛 and𝑚 are

the number of nodes and edges respectively. The time complexity

of Hyperbolic Neighborhood Aggregation is 𝑂 (𝐾𝑛𝑑𝑙𝑑𝑙) , where 𝑑𝑙

denotes the dimensionality of output features of the final layer

𝑙 . Supposing 𝑑ℓ−1 and 𝑑ℓ are equal to 𝑑 , an 𝑙-layer model has a

cost of 𝑂 (𝑙𝐾𝑛𝑑2 + 𝑙𝐾𝑚𝑑) . The time complexity is on par with other

GNN methods such as HAT and GCN that have a complexity of

𝑂 (𝑙𝑛𝑑2 +𝑙𝑚𝑑) , because in practice 𝐾 is a small non-negative integer

(e.g., the maximum 𝐾 is 3 in our paper, and most of the time, setting

𝐾 to 2 would be sufficient).

5 EXPERIMENTAL SETUPS
Datasets. We use open access homogeneous digraph datasets of

varied size and domain (Table 1), and create numerous splits of each

dataset and task for more reliable results.

Tasks & Metrics. We use the following tasks and metrics.

• Link Prediction (LP). LP demonstrates a method’s capability in

modeling asymmetric node connectivity, as a binary classification

task of discriminating the missing edges from the fake ones.

Given a digraph G, we train models on its incomplete version G′

by randomly removing edges. Half of the removed edges form

the positive samples in the validation set, and the other half form

the positive samples in the test set. The negative samples are

randomly sampled from unconnected node pairs in G, drawing
the same number as there are positive samples. Metrics are AUC

(Area under the ROC Curve) and AP (Average Precision).

• Semi-supervised Node Classification (NC) [48]. In NC, each dataset

contains only 20 labeled nodes for each node class, which requires

use of the graph structure for predicting the labels of remaining

nodes. The validation set consists of 500 random unlabeled nodes.

Unlabeled nodes not in the validation set make up the test set.

• Link Sign (Property) Prediction (SP).Many real-world graphs are

signed networks, e.g., social networks that allow trust and distrust

user relationships. We use the Wiki dataset to evaluate the accu-

racy in predicting attributes of directed edges representing votes

{oppose, neutral, support} [20]. Given a digraph G, 5% of edges

are labeled for training, 5% for validation, and 90% for testing.

• Embedding Visualization (EV). EV shows the expressiveness of

methods qualitatively. We visualize node representations in 2D

space projected via PCA [53]. Embedding vectors are obtained

2736

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Honglu Zhou et al.

Table 1: Statistics of datasets. Reciprocity measures the like-
lihood of nodes to be mutually linked. Label rate is the ratio
of nodes labeled for training.

LP Reciprocity # Nodes # Edges Nodes Edge Degree
Avg. Max

Air 15.68% 1, 226 2, 615 Airport Preferred Route 4 37

Blog 24.25% 1, 224 19, 025 Blog Hyperlink 31 467

Survey 38.77% 2, 539 12, 969 User Friendship 10 36

Cora 0.06% 2, 708 5, 429 Paper Citation 4 168

DBLP 0.43% 12, 591 49, 743 Paper Citation 8 710

NC # Nodes # Edges Node Edge Classes Features Label Rate

CiteSeer 3, 312 4, 715 Paper Citation 6 3, 703 3.62%
Cora-ML 2, 995 8, 416 Paper Citation 7 2, 879 4.67%
Wiki 7, 115 103, 689 User Vote 3 7, 115 0.84%

from the NC task. Hyperbolic embeddings are mapped to the

Euclidean space before 2D projection.

In all tables, the best score is bolded, the second best is underlined,

and the third best is in italic. Relative gains are computed as (Best−
Second)/Second. ∗ indicates statistically superior performance of

the best to the second best at a significance level of 0.001 using a

standard paired t-test. Values after ± are standard deviations.

Implementation Details. Hyperparameter tuning was performed

for each method per task and dataset (on the first split), which

substantially improved the results of ablations and baselines. We

searched initial learning rates {0.001, 0.01, 0.1}, momentums {0.9, 0.999},
weight decays {0, 0.001}, and dropout rates {0, 0.05, 0.1}. Unique hy-
perparameters associated with each method were considered as

well. E.g., for GAT, we searched the number of attention heads

from {4, 8} and 𝛼 from {0.1, 0.2}; for DiGCN, the teleport probabil-
ity from {0.05, 0.1, 0.15, 0.2} and 𝐾 from {1, 2} [48, 58]; for MagNet, 𝑞

in the magnetic Laplacian from {0, 0.05, 0.1, 0.15, 0.2, 0.25}and 𝐾 from

{1, 2, 3} [58]; etc. For D-HYPR, we tuned 𝜆 from {0.01, 0.05, 1, 5} and
𝐾 from {1, 2, 3}. For all GNNs, we used 2 layers for a fair com-

parison. Models were optimized with Adam [21] following prior

work [7, 8, 59], with early stopping based on the validation results.

6 RESULTS
Link Prediction.We list the LP results of D-HYPR in comparison

to 10 GNN techniques using 4 or 8 dimensional node embeddings

on Air and Cora in Table 2. One advantage of hyperbolic digraph

embedding is low data distortion even with a low-dimensional em-

bedding space. The superior performance of D-HYPR is evident—the
highest relative gain of D-HYPR is 21.43% on AP over the Cora

dataset. In addition, the difference from the mean to the best metric

value is considerably lower for D-HYPR than other methods. Given

a low budget of embedding dimensionality, methods that use hy-

perbolic space (D-HYPR, HAT and HGCN) are top performing, and

the latest DRL GNNs (D-HYPR, MagNet, DiGCN, and DGCN) overall

outperform traditional GNNs (GCN, VGAE, and GAT).

We report the LP performance of D-HYPR in Table 3 in compari-

son to 14 techniques by using a 32-dimensional embedding space

following the typical practice [48]. We can observe that techniques

relying on matrix decomposition (ATP) or random walks (NERD,

APP), are sensitive to outliers and lack effectiveness and robust-

ness. While standard deviations are omitted from the table due to

space constraints, we have found that methods with higher average

metric values typically have smaller standard deviations. GNNs

obtain higher scores. Comparing Euclidean-based methods, DRL

techniques (marked with
†
) can achieve better results than popular

GNNs (e.g., GCN). Still, methods that learn representations in hy-

perbolic space (marked with
§
) tend to be more competitive than

those in Euclidean space.With 32-dimensional embeddings, gravity-

augmented GCN and VGAE obtain better results than GCN and

VGAE, and are able to occasionally hold the second or third position

when ranking all 15 methods based on their performance. As the di-

mensionality increases, the gap from D-HYPR to the other methods

decreases, but D-HYPR remains the best-performing method across

all datasets and metrics.

Semi-supervised Node Classification. Table 4 reports the NC
results on CiteSeer and Cora-ML, and Table 5 provides the results

on Wiki. D-HYPR, which considers diverse neighborhoods with low

distortion and is trained with self-supervision to preserve asymme-

try, statistical significantly outperforms the state-of-the-art (SOTA)

methods. We increase the embedding dimensionality from 4 up to

256. The effectiveness of D-HYPR is remarkable in low dimension-

ality regimes, yet D-HYPR also remains the best method at a high

dimensionality. Unlike the LP task, DGCN and DiGCN often hold

the second or third rank. However, due to sensitivity to tuned hy-

perparameters, their performance is unstable across dataset splits

(i.e., occasionally extremely large standard deviations).

We further follow prior work [15] in reporting the results when

the number of nodes labeled for training is varied between 1%

and 10%. According to Fig. 3, D-HYPR consistently outperforms the
baselines, and tends to perform well at fairly low label rates.

Link Sign Prediction. Table 5 reports the results of SP. D-HYPR
is the most effective GNN model. Similar to LP and NC tasks, the

effectiveness of D-HYPR is the most striking using a 4 dimensional

embedding space. One interesting observation is that the relative

gains of D-HYPR on Wiki NC is much higher than Wiki SP, which

suggests that asymmetry preservation can greatly improve the NC

results (because unlike the NC task, while learning the asymmetric

link sign prediction task, the baselines are able to simultaneously

learn asymmetric node connectivity).

Embedding Visualization. In Fig. 1, we visualize 2D projections

of embeddings. Unlike the prior methods (e.g., DGCN, DiGCN,

etc.), in whose 2D projected embedding space nodes belonging

to different topic classes often severely overlap, D-HYPR leads to

the best class separation. This suggests that D-HYPR produces an

embedding space that better captures the semantics of the digraph.

Parameter Sensitivity. We first examine how 𝜆 affects the per-

formance of D-HYPR by varying 𝜆 from 0.25 to 10 (Table 6) while

keeping other hyperparameters fixed (32-Dim, the NC task). Larger

𝜆 place more value on a symmetric embedding distance (which mod-

els ‘homophily’), whereas a smaller 𝜆 emphasizes the asymmetric

node connectivity (which characterizes ‘preferential attachment’).

The performance of D-HYPR first increases with 𝜆 and then de-

creases. Using the 𝜆 that produces the best result, we then vary 𝐾 .

As shown in Table 7, better results are obtained when 𝐾 is larger,

which means a wider receptive field and more scale information.

However, an overly large 𝐾 can lead to feature dilution. It is worth

mentioning that D-HYPR still outperforms the SOTA methods by a

large margin when 𝐾=1, which suggests the superiority of D-HYPR

2737

D-HYPR: Harnessing Neighborhood Modeling and Asymmetry Preservation for Digraph Representation Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 2: Results of Link Prediction on Digraphs with 4- or 8-dimensional node embeddings.

Model (4/8-Dim)
Air Cora

4-Dim 8-Dim 4-Dim 8-Dim
AUC AP AUC AP AUC AP AUC AP

GCN [22] 67.88 (61.73) 67.88 (60.51) 69.21 (64.05) 69.68 (63.48) 65.92 (61.00) 65.92 (59.97) 70.89 (65.67) 71.26 (65.28)
VGAE [23] 69.77 (62.86) 70.73 (62.55) 73.49 (66.87) 74.04 (66.95) 63.86 (56.90) 63.86 (55.39) 66.60 (60.33) 66.60 (58.75)
GAT [51] 69.02 (63.48) 69.02 (62.86) 71.31 (67.03) 71.31 (67.01) 68.18 (64.73) 68.18 64.31) 72.70 (68.70) 73.93 (69.08)

Gravity GCN
†
[40] 65.20 (59.41) 67.73 (60.98) 74.00 (68.91) 75.43 (69.14) 70.37 (65.80) 70.37 (64.65) 75.29 (71.85) 77.17 (72.50)

Gravity VGAE
†
[40] 62.24 (55.48) 62.24 (54.97) 68.00 (60.23) 68.00 (59.57) 66.74 (61.79) 66.74 (60.61) 71.04 (65.45) 71.04 (64.15)

DGCN
†
[49] 74.36 (65.75) 71.42 (63.27) 77.23 (70.60) 75.86 (70.27) 75.33 (71.88) 71.95 (68.58) 79.01 (75.30) 79.01 (74.28)

DiGCN
†
[48] 72.59 (64.37) 70.01 (61.66) 74.65 (69.27) 75.40 (68.29) 70.61 (65.81) 67.11 (61.57) 74.63 (70.65) 74.88 (69.86)

MagNet
†
[58] 72.26 (58.44) 71.10 (57.92) 76.64 (64.26) 78.62 (64.69) 77.45 (55.93) 79.32 (56.84) 77.46 (66.82) 76.59 (63.96)

HAT
§
[59] 76.11 (71.24) 73.72 (69.35) 80.52 (75.13) 79.73 (74.05) 76.25 (72.84) 74.38 (70.27) 82.58 (77.82) 82.05 (77.39)

HGCN
§
[8] 80.90 (66.63) 80.90 (65.95) 84.67 (77.65) 85.97 (78.14) 80.02 (67.37) 82.16 (66.66) 85.05 (83.07) 88.04 (84.63)

D-HYPR (ours) †§ 85.79 (∗81.69) 85.92 (∗81.93) 88.46 (∗84.26) 88.46 (∗84.82) 86.08 (∗83.99) 88.74 (∗85.33) 88.88 (∗86.31) 91.13 (∗87.76)

Relative Gains (%) 6.04 (14.67) 6.21 (18.14) 4.48 (8.51) 2.90 (8.55) 7.57 (15.31) 8.01 (21.43) 4.5 (3.9) 3.51 (3.7)

Note:
†
denotes the method was designed specifically for homogeneous digraphs (i.e., DRL), and

§
denotes the use of hyperbolic space. Results (in percentage

%) on each dataset of each method are from 100 repeated experiments (10 different train/test splits per dataset and 10 runs using different random seeds per

split). We list the best and the average results, and the average is shown in brackets.

Table 3: Results of Link Prediction on Digraphs with 32-dimensional node embeddings.

Model (32-Dim) Air Cora Blog Survey DBLP
AUC AP AUC AP AUC AP AUC AP AUC AP

MLP 81.29 (76.52) 83.53 (78.18) 84.47 (81.67) 87.70 (83.69) 93.31 (92.48) 93.31 (92.45) 91.21 (89.98) 92.46 (90.75) 51.22 (49.98) 51.22 (49.99)

NERD
†
[19] 60.62 (56.39) 67.37 (60.19) 65.62 (62.02) 71.68 (65.66) 95.03 (94.00) 95.03 (93.47) 77.12 (69.30) 79.60 (70.80) 95.78 (95.37) 95.93 (95.41)

ATP
†
[44] 68.99 (66.40) 68.99 (64.99) 88.47 (86.44) 88.47 (86.04) 85.05 (83.46) 85.05 (79.30) 73.53 (71.47) 73.53 (70.64) 60.43 (59.21) 60.43 (57.37)

APP
†
[61] 85.08 (82.72) 86.35 (84.58) 86.65 (85.50) 89.80 (87.22) 92.33 (91.65) 92.33 (90.55) 91.16 (90.34) 92.77 (91.14) 95.58 (95.33) 9573 (95.41)

GCN [22] 76.71 (72.27) 80.95 (75.13) 80.77 (78.73) 85.67 (81.21) 91.87 (90.18) 92.16 (90.54) 89.29 (87.98) 91.78 (89.42) 92.98 (92.34) 94.37 (93.15)
VGAE [23] 77.79 (73.75) 82.73 (76.75) 80.80 (79.24) 85.47 (81.57) 92.25 (91.39) 92.80 (91.85) 90.07 (88.78) 92.39 (90.14) 93.36 (92.64) 94.85 (93.45)
GAT [51] 84.21 (80.24) 84.79 (81.46) 85.40 (82.58) 88.53 (84.60) 92.69 (89.95) 92.69 (89.83) 92.01 (91.05) 93.09 (91.65) 95.94 (95.62) 96.28 (95.80)

Gravity GCN
†
[40] 85.16 (82.22) 86.86 (83.50) 85.62 (83.87) 88.73 (85.62) 95.11 (94.46) 95.11 (94.31) 91.63 (90.86) 93.11 (91.76) 96.89 (96.78) 97.46 (97.34)

Gravity VGAE
†
[40] 83.98 (80.06) 85.67 (81.61) 87.17 (84.46) 89.51 (86.22) 96.15 (95.59) 96.15 (95.42) 91.64 (90.96) 93.23 (91.82) 95.98 (95.57) 96.24 (95.81)

DGCN
†
[49] 77.83 (73.68) 80.79 (75.64) 83.57 (81.34) 85.48 (83.00) 87.74 (86.74) 88.13 (86.75) 90.47 (89.49) 91.27 (89.94) 92.26 (91.83) 90.16 (89.52)

DiGCN
†
[48] 75.35 (71.27) 77.64 (73.97) 81.80 (78.90) 83.03 (79.92) 91.98 (90.50) 89.34 (87.36) 89.85 (88.17) 89.80 (88.08) 89.99 (89.72) 89.93 (89.60)

MagNet
†
[58] 79.32 (75.58) 80.66 (76.34) 82.77 (71.90) 81.63 (69.84) 91.83 (90.81) 90.46 (89.29) 86.65 (84.81) 87.76 (85.71) 81.89 (80.57) 81.68 (81.50)

HNN
§
[13] 88.42 (85.79) 88.95 (86.40) 88.75 (86.33) 90.81 (87.81) 95.80 (95.39) 95.80 (95.16) 92.07 (91.39) 93.40 (92.04) 97.43 (97.14) 97.43 (97.13)

HGCN
§
[8] 88.26 (86.12) 88.88 (86.64) 89.24 (87.68) 91.54 (88.97) 95.64 (95.23) 95.64 (95.00) 92.15 (91.50) 93.38 (92.08) 97.54 (97.33) 97.62 (97.37)

D-HYPR (ours) †§ 89.07 (86.33) 89.21 (
∗86.86) 89.50 (

∗88.22) 91.62 (
∗89.47). 96.19 (95.62) 96.18 (

∗95.48) 92.56 (
∗91.96) 93.63 (

∗92.46) 97.66 (
∗97.38) 97.75 (

∗97.44)

Relative Gains (%) 0.74 (0.24) 0.29 (0.25) 0.29 (0.62) 0.09 (0.56) 0.04 (0.03) 0.03 (0.06) 0.44 (0.50) 0.25 (0.41) 0.12 (0.05) 0.13 (0.07)

Note: Every result is from 100 experiments (the same as in Table 2).

is not simply coming from the neighbor augmentation that con-

nects nodes to their k-order neighbors. Hyperbolic neighborhood

collaboration and preserving asymmetry are important factors that

lead to the superiority of D-HYPR.
Ablation Study. As shown in Table 8, removing any neighborhood

that we defined harms the performance of D-HYPR. Compared with

the approach that learns the proximity matrices (adjacency matrix

𝐴 + 3 learnable matrices) or approaches that use other forms of

multi-scale proximity matrices (e.g., MagNet, DiGCN and DGCN),

D-HYPR performs much better. The proximity matrices are proposed

in a way to leverage the inductive biases exhibited in real-world

digraphs, thus facilitating the learning process and increasing the

accuracy. Replacing hyperbolic with the Euclidean space entails sub-

stantial performance drops. Still, this ablation yields better results

than GCNs due to the other proposed components (e.g., collabo-

rative learning). Neighborhood collaboration is also crucial. The

ablation that removes the hyperbolic neighborhood aggregation

component has worse results than our full design, and the abla-

tion that further replaces hyperbolic with the Euclidean space has

much lower accuracies. Moreoever, self-supervision helps substan-

tially. D-HYPR is aided by the Gravity regularizer more than the

Fermi-Dirac regularizer, as the former captures the asymmetric link

connectivity. While the Fermi-Dirac regularizer provides auxiliary

benefits, the embedding distance term in the Fermi-Dirac regular-

izer co-occurs in the Gravity regularizer, which also explains the

stronger capability of the latter. All ablations have a lower accuracy

than our full model, suggesting that the ablated components work

together to increase the learning abilities of D-HYPR.
Discussion. D-HYPR has a statistically superior and more stable

performance across datasets and tasks. This is because D-HYPR ben-
efits from the use of hyperbolic space, information collected from

the multi-ordered diverse neighborhoods and accounts for direc-

tionality. By favoring non-Euclidean over Euclidean geometry for

DRL, D-HYPR incurs lower node neighborhoods distortion. In addi-

tion, the proposed 4 canonical types of 𝑘-order proximity matrix

are defined based on the semantics of directed edges in accordance

with real-life observations. This allows D-HYPR to leverage induc-

tive biases exhibited in many real-world digraphs, facilitating the

learning and increasing the accuracy.

2738

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Honglu Zhou et al.

Table 4: Results of Node Classification on Digraphs.
Model CiteSeer Cora-ML

4-Dim

MLP 37.68 ± 3.0 51.19 ± 6.3
GCN [22] 32.82 ± 7.9 60.56±9.8
GAT [51] 51.97±4.2 68.38±3.4
DGCN [49] 38.67 ± 10.0 53.44 ± 11.1
DiGCN [48] 53.43±10.3 71.35±2.3
HNN [13] 47.44 ± 2.9 52.76 ± 4.9
HGCN [8] 42.24 ± 3.6 52.17 ± 5.9
D-HYPR (ours)

∗65.72±2.9 ∗74.63±1.2
Relative Gains (%) 23.00 4.60

8-Dim

MLP 51.70 ± 2.6 60.48 ± 1.8
GCN [22] 36.26 ± 6.5 67.62 ± 10.8
GAT [51] 50.81 ± 3.9 74.87 ± 1.8
DGCN [49] 57.27±2.4 77.16±4.4
DiGCN [48] 60.37±2.6 78.38±1.2
HNN [13] 50.73 ± 3.1 61.54 ± 2.1
HGCN [8] 52.57 ± 2.3 73.44 ± 2.3
D-HYPR (ours)

∗67.96±1.6 ∗81.55±1.6
Relative Gains (%) 12.57 4.04

32-Dim

MLP 53.18 ± 1.6 61.63 ± 1.8
GCN [22] 53.20 ± 3.1 69.51 ± 8.5
GAT [51] 63.03 ± 0.6 71.91 ± 0.9
DGCN [49] 64.17±2.4 81.29±1.6
DiGCN [48] 65.83±1.8 78.08±1.9
HNN [13] 56.10 ± 2.2 62.49 ± 2.6
HGCN [8] 59.02 ± 2.3 76.48 ± 1.5
D-HYPR (ours)

∗70.66 ± 1.2 ∗82.19 ± 1.3
Relative Gains (%) 7.34 1.11

64-Dim

MLP 57.20 ± 1.9 65.43 ± 2.9
GCN [22] 52.71 ± 4.1 72.53 ± 2.0
GAT [51] 56.29 ± 2.5 75.50 ± 1.5
DGCN [49] 64.45±1.6 80.93±1.8
DiGCN [48] 62.88±7.5 79.90±1.1
HNN [13] 55.80 ± 1.9 65.82 ± 2.2
HGCN [8] 58.73 ± 2.8 76.49 ± 1.3
D-HYPR (ours)

∗69.07±1.5 ∗81.20±1.1
Relative Gains (%) 7.17 0.33

128-Dim

MLP 57.68 ± 1.8 66.29 ± 2.2
GCN [22] 57.87±2.4 73.84 ± 2.4
GAT [51] 56.48 ± 2.1 74.82 ± 1.8
DGCN [49] 66.25±1.5 81.50±1.6
DiGCN [48] 56.50 ± 14.1 79.83±1.2
HNN [13] 56.23 ± 2.4 65.12 ± 1.7
HGCN [8] 57.65 ± 3.2 76.92 ± 1.6
D-HYPR (ours)

∗70.53±1.1 ∗81.77±1.3
Relative Gains (%) 6.46 0.33

256-Dim

MLP 57.26 ± 2.2 64.86 ± 3.1
GCN [22] 55.82 ± 3.2 75.20 ± 1.9
GAT [51] 57.66 ± 2.4 74.19 ± 1.5
DGCN [49] 65.90±1.5 81.29± 1.4

DiGCN [48] 46.36 ± 13.75 79.46±1.2
HNN [13] 54.64 ± 2.4 66.09 ± 2.0
HGCN [8] 58.23± 2.3 76.91 ± 1.7
D-HYPR (ours)

∗71.10±1.2 ∗81.80± 1.4
Relative Gains (%) 7.89 0.63

Results in [49] (32-Dim)

ChebNet [11] 56.46 ± 1.4 64.02 ± 1.5
SGC [54] 44.07 ± 3.5 51.14 ± 0.6
APPNP [24] 65.39 ± 0.9 70.07 ± 1.1
InfoMax [52] 60.51 ± 1.7 58.00 ± 2.4
GraphSage [17] 63.19 ± 0.7 72.06 ± 0.9
SIGN [38] 60.69 ± 0.4 66.47 ± 0.9 s

Note: 20 random splits per dataset are used for this task.

Since D-HYPR addressesNeighborhoodModeling, we provide neigh-
borhood analyses of datasets in Fig. 4, where pie charts show the

ratio of the 4 canonical types of neighborhoods in each dataset

(𝐾=1). Unlike the diffusion in/out neighborhood that traditional
GNNs typically use, common in/out neighborhood consists of more

neighbors, which suggests that neighborhood collaborative learn-

ing benefits from encoding additional context. Nevertheless, a larger

neighborhood size does not necessarily entail a greater importance

Figure 3: Accuracy on the Semi-supervised Node Classification
task by varying the ratio of nodes labeled for training. The
embedding dimensionality is 32.

Table 5: Experimental results on Wiki.

Model Node Classification Link Sign Prediction

4-Dim

GCN [22] 17.01 ± 0.1 78.96±0.4
GAT [51] 40.75±10.7 79.38±0.2
HGCN [8] 36.07±5.3 78.72 ± 0.0
D-HYPR (ours)

∗71.27±0.79 ∗79.83±0.0
Relative Gains (%) 74.90 0.57

8-Dim

GCN [22] 39.26 ± 9.5 78.76 ± 0.1
GAT [51] 46.78± 10.5 79.41±0.2
HGCN [8] 58.40±10.9 79.23±0.2
D-HYPR (ours)

∗70.53±1.6 ∗79.47±0.3
Relative Gains (%) 20.77 0.08

32-Dim

GCN [22] 37.77 ± 6.7 79.39± 0.1
GAT [51] 46.12± 8.5 79.66± 0.1

HGCN [8] 52.63± 5.8 79.21 ± 0.2
D-HYPR (ours)

∗71.65 ± 1.0 ∗79.73 ± 0.2
Relative Gains (%) 36.14 0.09

Note: 10 random dataset splits are used for the SP task. The embedding

dimensionality is 32.

according to the ablation study (Table 8). For each neighborhood

type, we also plot a histogram showing the distribution of the num-

ber of neighbors a node has over the entire graph. We observe

asymptotical power-law node-degree distributions (i.e., scale-free)

for most neighborhoods in these digraph datasets.

Though in principle, MLP can serve as the node-pair score func-

tion to learn asymmetric node connectivity (e.g., used by MagNet,

DiGCN, etc., in the LP experiments), we resort to Fermi-Dirac and

Gravity decoders because the two neatly model the driving forces

of link formation, and provide the right level of inductive biases for

D-HYPR to more easily generalize well across cases. Fermi-Dirac is

particularly suitable for hyperbolic geometry because Fermi-Dirac

statistics provide a physical interpretation of hyperbolic distances as

energies of links [27], and the Gravity function is elegantly derived

from Newton’s theory of universal gravitation with the learnable

mass encompassing centrality measures. Overall, D-HYPR lever-

ages the inductive biases exhibited in real-world digraphs and thus

generalizes well across tasks; it utilizes multi-ordered partitioned-

neighborhoods with hyperbolic neighborhood collaboration to ad-

dress Neighborhood Modeling, and employs self-supervised learning

with sociopsychology-inspired regularizers for Asymmetry Preser-
vation.

2739

D-HYPR: Harnessing Neighborhood Modeling and Asymmetry Preservation for Digraph Representation Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 6: Parameter sensitivity analysis in terms of 𝜆. The superiority of D-HYPR is not sensitive to the hyperparameter 𝜆.

𝜆 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 10.0

CiteSeer 69.74 70.66 70.46 70.44 70.30 70.34 69.99 69.79 69.24 69.61 68.13 68.05 68.12 67.64 67.85 67.67 67.69 67.34 67.18 67.12 66.85

±1.6 ±1.2 ±1.3 ±1.4 ±1.1 ±1.3 ±1.4 ±1.6 ±1.6 ±1.2 ±1.4 ±1.3 ±1.9 ±1.8 ±1.8 ±1.9 ±1.9 ±2.3 ±2.1 ±1.7 ±1.5

Cora-ML 81.29 81.18 81.59 81.68 81.83 81.97 82.16 81.65 81.10 81.17 81.59 81.66 81.32 81.93 80.19 80.31 79.13 79.51 80.18 79.78 77.73

±1.3 ±1.2 ±1.2 ±1.4 ±1.1 ±1.0 ±1.3 ±1.2 ±1.0 ±1.4 ±1.0 ±1.2 ± 1.1 ±1.1 ±1.5 ±1.3 ±2.3 ±1.7 ±1.9 ±1.4 ±2.0

Note: the task is Node Classification, and the embedding dimensionality is 32 (same for Table 7).

Figure 4: Neighborhood analyses of datasets. The common in/out neighborhood consists of more neighbors than diffusion
in/out neighborhood that traditional methods typically use. The 8 digraph datasets demonstrate a clear scale-free characteristic
for most neighborhoods.

Table 7: Parameter sensitivity analysis in terms of 𝐾 . D-HYPR
consistently outperforms SOTA methods by a large margin.

𝐾 1 2 3

CiteSeer 69.23 ± 1.5 70.66 ± 1.2 69.76 ± 1.5

Cora-ML 82.16 ± 1.3 82.16 ± 1.3 82.19 ± 1.3

Table 8: Ablation study that demonstrates the individual
contribution of components in D-HYPR (32-Dim, the NC task).

Method CiteSeer Cora-ML

D-HYPR (Our Full Design) 70.66 ± 1.2 82.19 ± 1.3

No 𝐴𝑘
𝑑𝑖𝑛

68.72 ± 1.2 82.11 ± 1.2

No 𝐴𝑘
𝑑𝑜𝑢𝑡

69.10 ± 0.9 81.33 ± 1.4

No 𝐴𝑘
𝑐𝑖𝑛

69.98 ± 1.0 81.86 ± 1.6

No 𝐴𝑘
𝑐𝑜𝑢𝑡

69.84 ± 1.3 81.74 ± 1.8
No Hyperbolic Neighborhood Collaboration 70.13 ± 1.5 82.03 ± 1.1
No Gravity 68.58 ± 1.3 79.21 ± 1.5
No Fermi-Dirac 70.03 ± 1.2 82.05 ± 1.3
No Self-Supervision 67.85 ± 1.9 78.15 ± 2.1

Euclidean 61.86 ± 5.4 73.38 ± 6.7

Euclidean and No Neighborhood Collaboration 51.01 ± 6.2 65.46 ± 12.1
𝐴 + Three Learnable Matrices 60.97 ± 12.7 78.92 ± 2.9

7 CONCLUSION
We propose D-HYPR: the DigraphHYPERbolic Network, as a novel
GNN-based formalism for Digraph Representation Learning (DRL)

by addressing Neighborhood Modeling and Asymmetry Preserva-
tion. Through extensive and rigorous evaluation involving 21 prior

techniques, we empirically demonstrate the superiority of D-HYPR.
D-HYPR outperforms the current SOTA consistently and statisti-

cally significantly on 8 digraph datasets across 4 tasks. In addition,

D-HYPR retains effectiveness given a low budget of embedding di-

mensionality or labeled training samples, which is desirable for

real-world applications.

One limitation of D-HYPR is the increased number of parame-

ters, due to the use of multiple neighborhoods. As future work,

we would like to explore automatic and dynamic neighborhood

partitioning, as well as parameter-sharing mechanisms to improve

D-HYPR. Furthermore, theoretical analyses and novel large-scale

applications of D-HYPR are avenues worthy of exploration.

Acknowledgment. The research was supported in part by NSF

awards: IIS-1703883, IIS-1955404, IIS-1955365, RETTL-2119265, and

EAGER-2122119. This material is based upon work supported by

the U.S. Department of Homeland Security under Grant Award

Number 22STESE00001 01 01.

Disclaimer: The views and conclusions contained in this doc-

ument are those of the authors and should not be interpreted as

necessarily representing the official policies, either expressed or

implied, of the U.S. Department of Homeland Security.

2740

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Honglu Zhou et al.

REFERENCES
[1] Gregor Bachmann, Gary Bécigneul, and Octavian Ganea. 2020. Constant cur-

vature graph convolutional networks. In International Conference on Machine
Learning. PMLR, 486–496.

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam

Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,

and graph networks. arXiv preprint arXiv:1806.01261 (2018).
[3] Dominique Beani, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele

Corso, and Pietro Liò. 2021. Directional graph networks. In International Confer-
ence on Machine Learning. PMLR, 748–758.

[4] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine 34, 4 (2017), 18–42.

[5] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.

IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[6] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. 2017.

Neural embeddings of graphs in hyperbolic space. arXiv preprint arXiv:1705.10359
(2017).

[7] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christo-

pher Ré. 2020. Low-Dimensional Hyperbolic Knowledge Graph Embeddings.

In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 6901–6914.

[8] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. 2019. Hyperbolic

graph convolutional neural networks. In Advances in neural information process-
ing systems. 4868–4879.

[9] Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong

Sun, and Jie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv preprint
arXiv:2105.14686 (2021).

[10] Jindou Dai, Yuwei Wu, Zhi Gao, and Yunde Jia. 2021. A Hyperbolic-to-Hyperbolic

Graph Convolutional Network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 154–163.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems 29 (2016), 3844–3852.

[12] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. 2018. Hyperbolic en-

tailment cones for learning hierarchical embeddings. In International Conference
on Machine Learning. PMLR, 1646–1655.

[13] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. 2018. Hyperbolic neural

networks. In Advances in neural information processing systems. 5345–5355.
[14] Liyu Gong and Qiang Cheng. 2019. Exploiting edge features for graph neural

networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9211–9219.

[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[16] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. 2018. Learning mixed-

curvature representations in product spaces. In International Conference on Learn-
ing Representations.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[18] Rui Jiang, Weijie Fu, Li Wen, Shijie Hao, and Richang Hong. 2016. Dimension-

ality reduction on anchorgraph with an efficient locality preserving projection.

Neurocomputing 187 (2016), 109–118.

[19] Megha Khosla, Jurek Leonhardt, Wolfgang Nejdl, and Avishek Anand. 2019.

Node representation learning for directed graphs. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 395–411.

[20] Junghwan Kim, Haekyu Park, Ji-Eun Lee, and U Kang. 2018. Side: representation

learning in signed directed networks. In Proceedings of the 2018 World Wide Web
Conference. 509–518.

[21] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[22] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[23] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[24] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-

dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[25] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. 2020. A survey on

graph kernels. Applied Network Science 5, 1 (2020), 1–42.
[26] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and

Marián Boguná. 2010. Hyperbolic geometry of complex networks. Physical
Review E 82, 3 (2010), 036106.

[27] Dmitri Krioukov, Fragkiskos Papadopoulos, Amin Vahdat, and Marián Boguná.

2009. Curvature and temperature of complex networks. Physical Review E 80, 3

(2009), 035101.

[28] Marc T Law and Jos Stam. 2020. Ultrahyperbolic Representation Learning. Ad-
vances in neural information processing systems (NeurIPS 2020) (2020).

[29] Qi Liu, Maximilian Nickel, and Douwe Kiela. 2019. Hyperbolic graph neural

networks. arXiv preprint arXiv:1910.12892 (2019).
[30] JianxinMa, Peng Cui, KunKuang, XinWang, andWenwuZhu. 2019. Disentangled

graph convolutional networks. In International Conference on Machine Learning.
PMLR, 4212–4221.

[31] Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. 2019.

Spectral-based graph convolutional network for directed graphs. arXiv preprint
arXiv:1907.08990 (2019).

[32] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:

Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[33] Michael Mitzenmacher. 2004. A brief history of generative models for power law

and lognormal distributions. Internet mathematics 1, 2 (2004), 226–251.
[34] Maximillian Nickel and Douwe Kiela. 2017. Poincaré embeddings for learning

hierarchical representations. In Advances in neural information processing systems
(NeurIPS 2017). 6338–6347.

[35] Maximillian Nickel and Douwe Kiela. 2018. Learning continuous hierarchies in

the lorentz model of hyperbolic geometry. In International Conference on Machine
Learning. PMLR, 3779–3788.

[36] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining. 1105–
1114.

[37] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[38] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael

Bronstein, and Federico Monti. 2020. SIGN: Scalable Inception Graph Neural

Networks. arXiv preprint arXiv:2004.11198 (2020).
[39] Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. 2018. Representation

tradeoffs for hyperbolic embeddings. In International conference on machine
learning. PMLR, 4460–4469.

[40] Guillaume Salha, Stratis Limnios, Romain Hennequin, Viet-Anh Tran, and

Michalis Vazirgiannis. 2019. Gravity-inspired graph autoencoders for directed

link prediction. In Proceedings of the 28th ACM International Conference on Infor-
mation and Knowledge Management. 589–598.

[41] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[42] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. 2019. Skeleton-based action

recognition with directed graph neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7912–7921.

[43] Aaron Sim, Maciej L Wiatrak, Angus Brayne, Páidí Creed, and Saee Paliwal. 2021.

Directed graph embeddings in pseudo-riemannian manifolds. In International
Conference on Machine Learning. PMLR, 9681–9690.

[44] Jiankai Sun, Bortik Bandyopadhyay, Armin Bashizade, Jiongqian Liang, P Sa-

dayappan, and Srinivasan Parthasarathy. 2019. Atp: Directed graph embedding

with asymmetric transitivity preservation. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 265–272.

[45] Ryota Suzuki, Ryusuke Takahama, and Shun Onoda. 2019. Hyperbolic disk

embeddings for directed acyclic graphs. In International Conference on Machine
Learning. PMLR, 6066–6075.

[46] Veronika Thost and Jie Chen. 2021. Directed Acyclic Graph Neural Networks.

International Conference on Learning Representations (2021).
[47] Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, and Changhu

Wang. 2021. Directed Graph Contrastive Learning. Advances in Neural Informa-
tion Processing Systems (NeurIPS) 34 (2021).

[48] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and

Andrew Lim. 2020. Digraph Inception Convolutional Networks. Advances in
Neural Information Processing Systems 33 (2020).

[49] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and An-

drew Lim. 2020. Directed Graph Convolutional Network. arXiv preprint
arXiv:2004.13970 (2020).

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.
[51] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[52] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341
(2018).

[53] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.

Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.

2741

D-HYPR: Harnessing Neighborhood Modeling and Asymmetry Preservation for Digraph Representation Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

[54] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu,

and Kilian QWeinberger. 2019. Simplifying graph convolutional networks. arXiv
preprint arXiv:1902.07153 (2019).

[55] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems (2020).

[56] Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cunchao Tu. 2017. Fast network

embedding enhancement via high order proximity approximation.. In IJCAI.
3894–3900.

[57] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,

Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Bad for

Graph Representation? (2021).

[58] Xitong Zhang, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. 2021.

MagNet: A Magnetic Neural Network for Directed Graphs. Advances in Neural
Information Processing Systems 34 (2021).

[59] Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Fanny Ye.

2021. Hyperbolic graph attention network. IEEE Transactions on Big Data (2021).
[60] Yiding Zhang, XiaoWang, Chuan Shi, Nian Liu, and Guojie Song. 2021. Lorentzian

Graph Convolutional Networks. In Proceedings of the Web Conference 2021. 1249–
1261.

[61] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. 2017. Scalable

graph embedding for asymmetric proximity. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 31.

[62] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:

A review of methods and applications. AI Open 1 (2020), 57–81.

[63] Shichao Zhu, Shirui Pan, Chuan Zhou, Jia Wu, Yanan Cao, and Bin Wang. 2020.

Graph Geometry Interaction Learning. In Advances in Neural Information Pro-
cessing Systems.

2742

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Hyperbolic Embedding Learning
	4.2 Neighborhood Collaborative Learning
	4.3 Self-Supervised Learning with Asymmetry-Preserving Regularizers
	4.4 Time Complexity

	5 Experimental Setups
	6 Results
	7 Conclusion
	References

