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Abstract
Background: Recent studies have examined the relation 
between teacher motivation, motivational messages and 
student learning but are limited to an achievement- related 
context, primarily using survey data. Moreover, our un-
derstanding of the relation between various teacher char-
acteristics, such as teacher self- efficacy (TSE), and their 
motivational message use remains limited.
Aims: Our study tested whether teacher speech can be clas-
sified into self- determination (SDT)- based motivational 
messages and reliably assessed with a large language model 
(LLM). Additionally, we analysed the relation between pre- 
service TSE and their motivational message use.
Sample: For our first aim, we used human- rater annotations 
from 119 pre- service teachers' classroom recordings. For 
our second aim, we used data from 103 pre- service teach-
ers (52.69% female; Mage = 22.98, SDage = 3.26, Minage = 19, 
Maxage = 34) who participated in a survey and were video- 
recorded while teaching.
Methods: First, we manually classified pre- service teach-
ers' motivational messages based on transcripts and used 
human- rater annotations to fine- tune an LLM. Second, we 
analysed the relation between pre- service TSE and motiva-
tional message use.
Results and Conclusions: The fine- tuned LLM demon-
strated promising performance in assessing SDT- based 
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INTRODUCTION

Teacher motivational messages are central for students' achievement and motivation (Putwain & 
Remedios, 2014; Reeve & Jang, 2006; Santana- Monagas et al., 2022); however, current research has cer-
tain theoretical and methodological limitations. Our study aimed to expand on existing research with 
regard to two objectives.

First, until now, research has primarily focused on teacher motivational messages in achievement- 
related contexts (e.g., Alqassab & León, 2024; Putwain et al., 2017). Our study aimed to complement ex-
isting research by focusing on teachers' motivational messages that support or thwart students' feelings 
of autonomy, competence and relatedness – the three basic psychological needs essential for enhancing 
intrinsic motivation according to self- determination theory (SDT; Deci & Ryan, 2002; Ryan & Deci, 2020). 
Referring to prior work on teachers' SDT- based messages (Reeve & Jang, 2006), we argue that identifying 
teachers' messages that support or thwart these needs enhances our understanding of motivational pro-
cesses in class. Additionally, research on teacher motivational messages has predominantly relied on survey 
data (Putwain & Symes, 2011; Santana- Monagas & Núñez, 2022), although there are a few recent excep-
tions (e.g., Falcon et al., 2023; Reeve & Jang, 2006). We addressed this gap by recording pre- service teachers 
in authentic classroom settings and tested whether an AI- based method (large language model; LLM) can 
reliably categorise teachers' motivational messages. To achieve this, we developed and tested a new coding 
scheme to assess teachers' SDT- based motivational messages and human raters used this coding scheme to 
annotate teacher classroom transcripts. The annotated data were then used to fine- tune a pre- trained LLM 
and evaluate whether the LLM could reliably assess teachers' motivational messages.

Second, research that outlines the processes taking place between teachers' motivation and their 
teaching behaviours are under- researched. Studies on teacher self- efficacy (TSE) have shown that TSE 
is a critical factor for effective teaching (for an overview, see Klassen & Tze, 2014; Lauermann & ten 
Hagen, 2021; Lazarides & Warner, 2020); however, the specific actions teachers with high self- efficacy 
take to achieve quality teaching remain unclear. Theoretical frameworks have posited that teacher mo-
tivation, including TSE, is linked to teaching behaviours (Lazarides et al., 2024; Tschannen- Moran 
et al., 1998) through, for example, the use of verbal messages. Yet, there is limited research investi-
gating how specific motivational beliefs, like TSE, are related to specific teacher behaviours, such as 
motivational messages. In our study, we used the model of Tschannen- Moran et al.'s (1998) on TSE 
and its linkages to teaching performance and combined it with work on SDT- based teacher messages 
(Reeve & Jang, 2006) to investigate a specific type of teacher action – namely, the use of motiva-
tional messages – and examined how TSE predicts teacher motivational message use in the classroom. 

motivational messages but needs further refining to assess 
thwarting messages. The analysis with human annotation 
showed that pre- service TSE for classroom management 
positively affected the frequency of relatedness- supportive 
messages. Pre- service TSE for student engagement in-
creased the likelihood of never using a competence-  or 
relatedness- thwarting message. Pre- service TSE for in-
structional strategies reduced the frequency of autonomy- 
supportive messages. LLM- based analyses showed slightly 
different results but did not contradict human annotation- 
based analyses.

K E Y W O R D S
artificial intelligence, large language models, motivational messages, self- 
determination theory, teacher self- efficacy
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    | 3SDT- MESSAGES AND AI- BASED CLASSIFICATION

We used human- rated teacher transcript data to explore the longitudinal links between pre- service 
teacher- reported TSE at the beginning of the semester and pre- service teachers' motivational message 
use mid- semester. Furthermore, we conducted an additional analysis in which we used the fine- tuned 
LLM predictions of supportive messages to investigate their relation with pre- service TSE beliefs.

MOTI VATIONA L MESSAGES IN THE CL ASSROOM

Teaching behaviours comprise both the verbal and nonverbal behaviours of teachers in class (Liu, 2021). 
In this study, we focused on teacher motivational messages as a type of teachers' verbal behaviour. 
Teacher motivational messages can be defined as advisory messages from teachers that leverage specific 
types of motivation to encourage students' engagement in school- related activities (Santana- Monagas 
et al., 2022). Various studies have examined the relation between teacher motivational messages and 
student outcomes, such as the use of teachers' gain-  and loss- framed motivational messages (e.g., Falcon 
et al., 2023; Putwain et al., 2017). Gain- framed messages refer to teacher messages that highlight stu-
dents' potential gain or attainment from following a certain course of action, while loss- framed mes-
sages emphasise what can be lost or not attained (Putwain et al., 2021). Existing empirical work has 
shown that teachers' gain- framed messages with an autonomous motivational appeal indirectly pre-
dicted students' academic performance through students' autonomous motivation cross- sectionally 
(Santana- Monagas et al., 2022). Putwain et al. (2017) showed that students who appraised fear appeals–
loss- framed motivational messages that emphasise the negative consequences of failure–as threating, 
exhibited lower examination performance over time due to reduced behavioural engagement. In addi-
tion to gain-  and loss- framed messages, some studies have investigated other types of supportive teacher 
motivational messages. In a quasi- experimental study, von der Embse et al. (2015) demonstrated that 
university students achieved higher exam scores when efficacy appeals–messages emphasising an indi-
vidual's ability to achieve an outcome – were delivered prior to an exam. In contrast, university students 
who received fear appeals before an exam performed worse (von der Embse et al., 2015). Alqassab and 
León (2024) showed that student- reported teacher reassuring messages, which demonstrate emotional 
support, hope and optimism, were positively and cross- sectionally related to students' intrinsic motiva-
tion. However, although researchers have investigated different types of motivational messages, they 
have mainly focused on motivational messages used in achievement- related contexts. This means the 
messages either highlighted the consequences of completing or not completing a task (e.g., Putwain 
et al., 2017; Santana- Monagas et al., 2022) or were specifically used and tested in the context of exam 
preparation (e.g., Alqassab & León, 2024; von der Embse et al., 2015).

Although extensive research exists on gain-  versus loss- framed messages, relatively few studies have 
focused on messages that promote students' intrinsic motivation. On a theoretical level, SDT (Deci 
& Ryan, 2000, 2002) proposes that teaching behaviours that address students' innate needs for au-
tonomy, competence and relatedness are central to fostering students' interest and intrinsic forms of 
motivation to learn. Autonomy is defined as a person's sense of initiative and personal ownership over 
a task, competence can be understood as a feeling of mastery and confidence in one's ability to succeed 
and develop, and relatedness is conceptualised as a sense of belonging (Ryan & Deci, 2020). In an 
experimental study, Reeve and Jang (2006) randomly assigned pre- service teachers to either a teacher 
or student role and investigated the relation between autonomy- supportive and autonomy- controlling 
instructional behaviours and students' perceived autonomy in a one- on- one, 10- min classroom setting. 
The results showed that offering encouragement–classified in this study as an autonomy- supportive 
instructional behaviour–was positively and significantly associated with students' perceived auton-
omy. In contrast, autonomy- controlling instructional behaviours, such as asking controlling questions 
and using “should” or “ought to” statements, were negatively related to students' perceived autonomy 
(Reeve & Jang, 2006). Recently, Ahmadi et al. (2023) successfully applied SDT to classify teachers' 
verbal and nonverbal supportive and thwarting teaching behaviours in class. The classification system 
assigns SDT- based behaviours to six categories: autonomy- , competence-  and relatedness- supportive or 
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4 |   METZNER et al.

thwarting behaviours. The study included verbal and nonverbal teaching behaviours. In this study, we 
utilised Ahmadi et al.'s (2023) classification system and extracted teachers' verbal cues to develop an 
SDT- based motivational message scheme (for more details, see the Measures section).

M ETHODOLOGICA L CONSIDER ATIONS OF TEACHER 
MOTI VATIONA L MESSAGE R ESEA RCH

Until now, research on teacher motivational message use in class has predominately relied on students' 
reports of teachers' messages (Putwain & Symes, 2011; Santana- Monagas & Núñez, 2022). Although stu-
dents' reports can provide insights into classroom activities, they may be shaped by extraneous factors, 
such as individual interest in the subject or social desirability effects, which can limit their objectivity and 
may, therefore, fail to present a comprehensive view of classroom dynamics (King & Bruner, 2000). As 
an alternative, researchers could use transcripts of video- recorded authentic lessons to assess teachers' 
motivational messages. However, such an approach is highly resource- intensive, requiring the training 
of human raters to manually annotate large quantities of data (Cash et al., 2012). One possible solution 
to this problem might lie in new methods, such as LLM, that enable researchers to annotate text auto-
matically based on previously defined criteria. LLMs are artificial intelligences (AI) with a large number 
of parameters trained on extensive corpora to interpret, generate, and process human language (Myers 
et al., 2024). LLMs can be adjusted to specific demands through fine- tuning, adapting a pre- trained model 
to specific tasks using a smaller, specialised data set, allowing quick adjustment to new tasks and data 
distributions. Unlike traditional machine learning (e.g., simple text mining), LLMs capture contextual 
word meanings rather than treating words as having fixed meanings (Demszky et al., 2023). LLM- based 
research on processing natural language has gained multidisciplinary interest (Ding et al., 2024), including 
educational research (Yan et al., 2024). Falcon and León (2024), for example, fine- tuned the Ada version 
of GPT- 3 and developed a two- stage model to identify and classify teachers' engaging messages into 
gain-  and loss- framed categories. Tan and Demszky (2023) showed that an LLM that was fine- tuned with 
teacher classroom transcript data validly assessed teacher classroom- management language and punitive-
ness. Following this approach, in our study, we used a newly developed coding scheme based on Ahmadi 
et al. (2023) to manually identify teachers' SDT- based motivational messages from classroom videos. These 
messages were classified by human raters into categories of autonomy- supportive, competence- supportive, 
relatedness- supportive, autonomy- thwarting, competence- thwarting and relatedness- thwarting messages. 
Just like Falcon and León's (2024) and Tan and Demszky's (2023) studies, we then used the human- rated 
data to fine- tune an LLM with the aim of reliably assessing teachers' motivational messages.

TEACHER SELF- EFFICACY A ND MOTI VATING TEACHING 
BEH AV IOURS

Although there has been much research examining the consequences of motivational messages for 
student outcomes (e.g., Putwain & Symes, 2011; Santana- Monagas et al., 2022), less is known about the 
factors that influence the type and quantity of motivational messages used by teachers. We addressed 
this gap in our study by examining how teachers' motivational beliefs, specifically their self- efficacy for 
teaching, relate to their motivational message use in class. TSE refers to teachers' perceptions of their 
ability to achieve desirable student learning and engagement outcomes, even with students who struggle 
or feel unmotivated (Tschannen- Moran & Hoy, 2001). TSE can be categorised into three dimensions: 
TSE for instructional strategies, for classroom management and for student engagement. Teacher self- 
efficacy for instructional strategies defines teachers' beliefs in their ability to implement various instructional 
methods that target student learning, such as providing alternative explanations or adjusting the level of 
challenge (Pfitzner- Eden et al., 2014; Zee et al., 2017), and is positively associated with teacher- reported 
cognitive activation, classroom management and emotional support (Lazarides & Schiefele, 2021). 
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    | 5SDT- MESSAGES AND AI- BASED CLASSIFICATION

Teacher self- efficacy for classroom management describes teachers' beliefs in their ability to maintain order in the 
classroom, for instance, through the introduction of classroom rules or effective management of dis-
ruptive student behaviour (Emmer & Stough, 2001; Pfitzner- Eden et al., 2014) and has been shown to 
be longitudinally and positively related to student- rated class- level monitoring (Hettinger et al., 2021). 
Teacher self- efficacy for student engagement refers to teachers' beliefs in their ability to motivate students, 
particularly those who feel unmotivated (Pfitzner- Eden et al., 2014; Tschannen- Moran & Hoy, 2001), 
and is positively associated with teacher- reported classroom climate (Fackler et al., 2021) and longi-
tudinally and positively related to class- level student- rated emotional support (Lazarides et al., 2023). 
Summarising these empirical results, it can be assumed that TSE for classroom management fosters 
teaching behaviours that promote structure and discipline in class, whereas TSE for student engage-
ment promotes teaching behaviours that foster a positive social climate in class. TSE for instruction is 
not well researched (see Kuusinen, 2016), and thus no clear pathway to specific teaching practices has 
been empirically identified.

Until now, research examining the link between TSE and need- supportive behaviour is still quite 
rare. Holzberger and Prestele (2021) showed on a school-  and teacher- level that TSE for instruction 
was positively and cross- sectionally related to teachers' use of cognitive activating behaviour. Cognitive 
activation can be expressed, for instance, through the provision of challenging tasks and questions 
(Praetorius et al., 2018), which can be considered as a form of competence- supportive behaviour 
(Ahmadi et al., 2023). TSE for classroom management was positively and cross- sectionally related to 
observer- rated emotional support (Ryan et al., 2015). Examples of emotional support include show-
ing interest in students' points of view (Praetorius et al., 2018), which is a component of relatedness- 
supportive behaviour (Ahmadi et al., 2023). Regarding TSE for student engagement, as one of the few 
studies, Putwain and von der Embse (2018) found that teachers with lower self- efficacy for student 
engagement more frequently used fear appeals. Fear appeals can be understood as a type of need- 
thwarting teaching behaviour using derogatory language (Ahmadi et al., 2023).

Referring to such prior work, we propose that the different dimensions of TSE in class are related 
to teachers' motivational messages – which then over time may manifest in certain need- supportive or 
need- thwarting teaching behaviours. More concretely, we assume that TSE for instructional strategies 
is linked to teachers' motivational messages that promote cognitive challenges (e.g., competence sup-
port), but would be unrelated or negatively related to messages that focus on motivation enhancement 
only (autonomy or relatedness support). TSE for classroom management could be assumed to foster the 
establishment of clear communication and rules in the learning environment by strengthening interper-
sonal relationships (e.g., relatedness support). TSE for student engagement could be assumed to foster 
motivation- enhancing messages (e.g., autonomy or relatedness support) and reduce the use of messages 
that undermine motivation (e.g., relatedness thwarting).

Theoretical work on teachers' self- efficacy posits that TSE affects their goal setting, effort and per-
sistence, ultimately shaping their teaching behaviour in class (Tschannen- Moran et al., 1998). Following 
this approach, we hypothesised that internal motivational teaching characteristics, more concretely, TSE, 
would affect teachers' externally displayed motivational messages – which we interpret as an expression 
of their efforts to teach (Flintcroft et al., 2017; Putwain & Roberts, 2012; Putwain & Symes, 2014). 
Based on this theoretical background, we introduce a hypothesised model that is illustrated in Figure 1. 
In this study, we only examine the first part of the model, depicted in solid black lines in Figure 1.

F I G U R E  1  Hypothesised model to examine the process linking teacher self- efficacy and teaching behaviours.
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THE PR ESENT STUDY

Against the background of theoretical work on SDT and TSE, and based on prior research examining 
teachers' motivational messages, we examined the following research questions and hypotheses:

RQ1. Can pre- service teachers' SDT- based motivational messages be reliably assessed 
with a classification system and with AI- based methods, namely LLMs?

H1. We hypothesised that teachers' motivational messages could be classified into six 
distinct categories based on SDT (Ahmadi et al., 2023; Deci & Ryan, 2002) and that a fine- 
tuned LLM would reliably assess these categories.

RQ2. How does pre- service TSE for instructional strategies, classroom management and 
student engagement at the beginning of the semester (T1) relate to their use of SDT- based 
motivational messages mid- semester (T2)?

H2a. We hypothesised that pre- service TSE for instructional strategies at the beginning 
of the semester (T1) would have a positive effect on competence- supportive messages used 
in class mid- semester (T2), but would be unrelated or negatively related to autonomy-  or 
relatedness-  supportive messages used in class mid- semester (T2).

H2b. We hypothesised that pre- service TSE for classroom management at the beginning 
of the semester (T1) would have a positive effect on relatedness- supportive messages used 
in class mid- semester (T2).

H2c. We hypothesised that pre- service TSE for student engagement at the beginning of 
the semester (T1) would have a positive effect on autonomy-  and relatedness- supportive 
messages used in class mid- semester (T2), as well as a negative effect on relatedness- 
thwarting messages used in class mid- semester (T2).

In addition to the second research question, we conducted further analyses to explore the potential 
of the fine- tuned LLM as a classification tool for assessing pre- service teachers' supportive messages 
and relating them to their self- efficacy beliefs. However, these analyses cannot be generalised, as we 
used the same transcript data to fine- tune the LLM, which may have introduced bias. We therefore 
analysed the following additional research question: How does pre- service TSE for instructional strate-
gies, classroom management and student engagement at the beginning of the semester (T1) relate to the 
LLM's prediction of pre- service teachers' SDT- based motivational messages mid- semester (T2)?

METHODS

Sample

In this study, we investigated the above two research questions with two cohorts of pre- service 
teachers. Figures A1 and A2 in Appendix A illustrate the pipeline of both research questions. To 
evaluate the reliability of an LLM for assessing pre- service teachers' motivational messages, video 
data from 119 recorded lessons of pre- service teachers were used. To investigate the relations be-
tween pre- service TSE beliefs and their use of motivational messages, a sample of 103 pre- service 
teachers (52.69% female; Mage = 22.98, SDage = 3.26, Minage = 19, Maxage = 34) was considered. These 
pre- service teachers had video- recorded their lessons and completed a survey on their motivational 
beliefs, except for 10 participants who did not fill out the questionnaire. Pre- service teachers were on 
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    | 7SDT- MESSAGES AND AI- BASED CLASSIFICATION

average in their fifth semester (SD = 1.81, Min = 2, Max = 15) and the majority were born in Germany 
(90.55%). Of this sample, the three most studied subjects were German (15.20%), English (12.25%) 
and Physical Education (9.31%). The study obtained ethical approval from the university ethics com-
mittee (protocol no. 41/2023).

Study design and procedure

The study was conducted in a Bachelor's- level course for pre- service teachers in the field of Educational 
Science at the end of their Bachelor program. The course focused on motivation- enhancing teaching 
and was offered 3–4 times per semester for 90 min per week. In the first weeks of the semester, partici-
pants learned about teaching quality and motivational strategies and observed a lesson in an assigned 
secondary school. Afterwards, pre- service teachers were matched with a teacher in a cooperating school, 
developed one lesson they would teach in that school, and presented the lesson in the Bachelor course. 
In the middle of the semester, all participants taught their lessons in the school and video- recorded the 
lesson, depending on the data protection regulations at the participating schools. For this study, we only 
included video and survey data from pre- service teachers who consented to their data being used for 
research purposes. The duration of the teaching sessions and classroom recordings ranged from 45 to 
90 min, depending on the specific school where the pre- service teachers conducted their lessons (see 
Hußner et al., 2024). In total, 119 lessons were video- recorded. The three most frequently taught sub-
jects were English (21.90%), Mathematics (12.41%) and German (10.95%).

Measures

The study featured a longitudinal design with two measurement occasions. Pre- service TSE was as-
sessed at the beginning of the semester (T1). Pre- service teachers' motivational messages were annotated 
using transcripts of their lessons (T2).

Teacher self- efficacy

TSE at the beginning of the semester (T1) was assessed using an adapted form of the German version 
(Pfitzner- Eden et al., 2014) of the Teacher Efficacy Scale (Tschannen- Moran & Hoy, 2001). The scale 
divides TSE beliefs into self- efficacy for instructional strategies (e.g., “I am confident I can find an 
alternative explanation or example if learners do not understand something”), for classroom manage-
ment (e.g., “I am confident in my ability to control disruptive behaviour in the classroom”) and for 
student engagement (e.g., “I am convinced that I can motivate the learners who have little interest in 
the lessons”). Response options ranged from 1 (strongly disagree) to 6 (strongly agree). Reliabilities of TSE 
dimensions and inter- rater reliabilities of motivational messages were acceptable. Descriptive statistics 
for the scale are reported in Table 1.

STD- based motivational messages

We developed a coding scheme based on the Teachers' Motivational Behaviour classification system 
by Ahmadi et al. (2023), who defined 57 sub- categories that describe verbal and nonverbal SDT- based 
teaching behaviours in detail. We adapted and summarised Ahmadi et al.'s (2023) sub- categories for 
verbal behaviours. We thereby reduced the scheme to the following six main categories: autonomy- 
supportive messages, competence- supportive messages, relatedness- supportive messages, autonomy- 
thwarting messages, competence- thwarting messages and relatedness- thwarting messages. Our 
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8 |   METZNER et al.

coding scheme differentiated these six main categories into 23 sub- categories that were mainly used 
to provide detailed definitions of the six main categories. For human annotations, we only used 
the six main categories. The detailed coding scheme is reported in the supplemental material. The 
transcription of the video recordings was carried out using the AI- based software DaVinci Resolve 
Studio (Blackmagic Design, 2023) and Panopto (Panopto, 2024) and was subsequently proofread by 
research assistants. The transcripts were annotated on a sentence- by- sentence basis. One research 
assistant and one PhD student annotated the transcripts. The raters received a training and regularly 
met to discuss ratings. Regular meetings and adjustment of the rating process took place until 30 
transcripts (25.21%) were doubly annotated with an inter- rater reliability of κ = .73. The remaining 
89 transcripts were annotated by only one rater. The inter- rater reliability for the main categories is 
reported later in the Results section.

Adapting an LLM to assess teachers' motivational messages

To address our first research question, we fine- tuned an LLM using human- annotated examples. 
Initially, we conducted several experiments with various open- source LLMs. Further details on the 
initial experiments can be found in Appendix B. The Gemma 2 27B model (Gemma Team, 2024) from 
Google yielded the best performance in these preliminary tests, and we proceeded with further fine- 
tuning of Gemma 2 27B. The Gemma 2 27B model is available for download and can be deployed on 
local infrastructure. The fine- tuning and evaluation took place in three steps. Figure A1 in Appendix A 
displays the pipeline of the fine- tuning and evaluation of the model.

First, we created a training set to fine- tune the model and a test set to evaluate its performance. The 
training and test sets included examples from human- rated motivational messages as well as out- of- 
domain data, which consist of messages that cannot be assigned to any motivational message category. 
For the training set, we randomly considered 80% of the human- annotated data, while the remaining 
20% were held back and assigned to the test set. However, due to natural imbalances in the distribu-
tion of teacher messages within the transcripts, certain message categories – particularly thwarting 
messages – were underrepresented (see Results chapter). Fine- tuning an LLM with imbalanced data 
could result in lower model performance. To address this issue, we additionally implemented a data aug-
mentation strategy by generating additional thwarting messages using ChatGPT (GPT- 4o). Specifically, 
we designed instructional prompts tailored to the sub- categories of thwarting messages, and ChatGPT 
generated new examples based on these prompts. Before integrating the syntactic messages into the 
training set, we calculated the inter- rater agreement between AI ratings and human ratings, yielding 
agreement levels of 99.17% for autonomy- thwarting messages, 62.89% for competence- thwarting mes-
sages and 79.49% for relatedness- thwarting messages. Messages with no agreement were excluded. 
Moreover, two former teachers evaluated the remaining messages for authenticity, and any messages 
deemed “too artificial” were excluded. The final set of validated messages was then incorporated into 
the training set (for a more detailed explanation, see Metzner et al., 2025).

Second, we fine- tuned and evaluated the model using five independent train- test splits. To optimise 
computational efficiency, we employed parameter- efficient fine- tuning (PEFT) with the LoRA adapter 
(Hu et al., 2021). To address class imbalance, we additionally applied class- balanced weighting, adjusting 

T A B L E  1  Descriptive statistics for pre- service teacher self- efficacy at the beginning of the semester.

Teacher self- efficacy Nitems M (SD) Range Nparticipants Cronbach's α

TSEIS 4 4.71 (0.60) 3–6 92 .73

TSECM 4 4.42 (0.70) 2–6 92 .84

TSESE 4 4.74 (0.56) 4–6 91 .72

Abbreviations: TSEIS, Teacher self- efficacy for instructional strategies; TSECM, Teacher self- efficacy for classroom management; TSESE, 
Teacher self- efficacy for student engagement.
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    | 9SDT- MESSAGES AND AI- BASED CLASSIFICATION

loss contributions based on sample frequency (Cui et al., 2019). The data distribution, including the 
number of examples per category from human annotations, AI- generated messages and the training and 
testing sets, is presented in Table 2.

Third, we assessed the model's predictions by comparing them to the held- back test set. The model 
was evaluated across all five runs, and the average performance was calculated for each message cat-
egory. To evaluate the fine- tuned model, a comprehensive statistical analysis was conducted, which 
assessed its accuracy and reliability in classifying motivational messages. Key evaluation metrics in-
cluded precision, recall, F1- score, specificity and accuracy, calculated using Python library scikit- learn 
(Pedregosa et al., 2011). Precision measured the proportion of correctly identified positive instances 
among all instances identified as positive. Recall assessed the proportion of correctly identified posi-
tive instances among all actual positive instances, whereas specificity measured the proportion of cor-
rectly identified negative instances relative to all actual negative instances. The F1- score, the harmonic 
mean of precision and recall, offered a balanced measure of the model's performance (Chinchor, 1992). 
Accuracy represented the overall proportion of correct predictions, including both positive and 
negative instances (Hossin & Sulaiman, 2015). The F1- score's interpretation depends on the mod-
el's specific task and domain. In this study, we drew on previous research that fine- tuned an LLM 
with teacher messages and reported F1- scores between 0.60 and 0.89 (Falcon & León, 2024; Tan & 
Demszky, 2023). Guided by these findings, we set a minimum F1- score threshold of 0.70 to ensure the 
reliability of our model's performance. Statistical analyses assessing the model's performance, facili-
tated by scikit- learn, ensured a thorough and rigorous evaluation. Results of the evaluation phase are 
reported in the Results section.

Examining the relation between pre- service teachers' self- efficacy and their 
use of motivational messages with human annotations

All analyses were run using Mplus 8.10 (Muthén & Muthén, 1998–2017). Bivariate correlations were 
analysed with SPSS Version 29. In our data, 11 participants had missing values for TSE beliefs. 
We estimated the missing values with Full Information Maximum Likelihood estimation (Dong & 
Peng, 2013). The sample included no missing values for motivational messages. To test how pre- 
service TSE dimensions were related to pre- service teachers use of motivational messages (RQ2), 
the frequency of motivational messages used by each participant was determined based on human- 
rater annotations. To balance the number of motivational messages used in comparison to words 
spoken, we divided for each participant the number of messages spoken in each category by the 
total number of words spoken and multiplied the result by 10,000, following Falcon et al. (2023). 

T A B L E  2  Data distribution of human- annotated, AI- generated messages and samples per training and test sets.

Motivational messages Nhuman- rater annotated messages NAI- generated messages Ntraining data set
a Ntest data set

b

Autonomy support 946 – 753.00 193.00 (±13.80)

Competence support 879 – 707.20 171.80 (±7.30)

Relatedness support 641 – 511.80 129.20 (±11.70)

Autonomy thwarting 286 219 445.40 59.60 (±3.20)

Competence thwarting 57 174 218.20 12.80 (±1.70)

Relatedness thwarting 174 185 328.40 30.60 (±2.60)

Out- of- domain data 1,500c – 1200.00 300.00 (±6.00)
aThe number of training samples is an estimate. The exact number was not tracked intentionally during the experiments.
bThe number of test samples is the average number of samples per category across all five testing splits.
cOut- of- domain data (data that cannot be classified into the motivational messages scheme) were only annotated for randomly selected 
segments from 15 transcripts to obtain a sufficient number of training and testing examples. However, the approximate ratio of out- of- domain 
data among transcript data is 95%.
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10 |   METZNER et al.

This procedure ensured that the number of messages was proportional to the number of words spo-
ken. Then, these values were rounded to the nearest integers. The motivational messages variable is 
a count variable, meaning it can take any value from zero to infinity. Following Muthén et al. (2016), 
we analysed the relation between pre- service TSE and their use of motivational messages by apply-
ing count regressions and first tested the model fit for: poisson regression, zero- inflated poisson 
regression, the negative binomial model and the zero- inflated negative binomial model. The zero- 
inflated negative binomial models had the best fit based on their lowest AIC and BIC values (see 
Table C1 in Appendix C; Feng, 2021; Hu et al., 2011). The zero- inflated negative binomial model is 
a two- part model. First, it analyses the probability of not using a motivational message, distinguish-
ing structural zeros from sampling zeros (zero- inflated logit model). Structural zeros arise from 
subjects who always produce zeros due to an inherent characteristic, such as a pre- service teacher 
who is unaware of a certain type of motivational message. A sampling zero occurs when an event 
that could happen by chance does not occur within the sample, like a pre- service teacher who usu-
ally uses a certain type of motivational message but did not during our observations (Feng, 2021; 
Hu et al., 2011). Second, a negative binomial count model examines the frequency of support-
ive and thwarting motivational messages, including sampling zeros and all positive integers (Cho 
et al., 2019). In total, we tested six zero- inflated negative binomial models, each model analysing the 
relations between a pre- service self- efficacy dimension and one motivational message type. Against 
the theoretical background explaining that the three TSE dimensions represent the construct of 
TSE (Tschannen- Moran & Hoy, 2001), we correlated the dimensions in the six zero- inflated nega-
tive binomial models. We tested TSE dimensions for multicollinearity, and all had VIF values below 
10, indicating no multicollinearity. Figure A2 in Appendix A illustrates the pipeline for addressing 
the second research question.

Examining the relation between pre- service teachers' self- efficacy and their 
use of motivational messages with the LLM's predictions

We conducted an additional analysis examining the relation between the LLM's predictions of support-
ive messages and pre- service TSE. To achieve this, we used the fine- tuned model to predict supportive 
messages for the 103 participants, calculated ratio scores relative to the number of words used, and ana-
lysed how these supportive message ratio scores related to pre- service TSE. We included only the pre-
dictions of supportive messages in the analysis, as the LLM did not reliably assess thwarting messages 
during model evaluation (see Results section). To determine the best- fitting regression model, we com-
pared poisson regression, zero- inflated poisson regression, the negative binomial model and the zero- 
inflated negative binomial model. The negative binomial model yielded the lowest AIC and BIC values. 
Subsequently, we analysed three negative binomial regressions for each category of supportive messages 
in relation to the pre- service TSE dimensions. The pre- service TSE dimensions were correlated.

R ESULTS

Descriptive statistics for pre- service teachers' human- rated SDT- based 
motivational message use

In total, pre- service teachers used 2983 instances of motivational messages in class. Autonomy- 
supportive messages were used in 31.71% of the labelled messages, 29.47% of the messages were 
competence- supportive messages and 21.49% of the messages were relatedness- supportive messages. In 
contrast, 9.59% of the messages were autonomy- thwarting messages, 1.91% were competence- thwarting 
messages and 5.83% were relatedness- thwarting messages. Descriptive statistics and reliability for SDT- 
based motivational messages are reported in Table 3.
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    | 11SDT- MESSAGES AND AI- BASED CLASSIFICATION

Evaluation of the Model's performance

Lastly, we evaluated the fine- tuned model on the given test data set. Our model achieved an average 
accuracy of 74.80% (±1.20%) across all categories. Table 4 shows the results of the final evaluation 
phase. While accuracy measures the proportion of correctly classified instances, precision, recall and 
F1- scores provide a more detailed evaluation of the model's performance. The message categories of 
autonomy support, competence support, relatedness support and out- of- domain data resulted in F1- 
scores over 0.70, indicating robust performance in classifying supportive messages and out- of- domain 
data. However, the message categories of autonomy thwarting, competence thwarting and relatedness 
thwarting reached F1- scores below 0.70.

Relations between pre- service teacher self- efficacy and human- rated 
motivational messages

Bivariate correlations between pre- service teacher self- efficacy and motivational 
messages

Bivariate correlations are reported in Table 5 and revealed that pre- service TSE for classroom manage-
ment and pre- service TSE for student engagement were positively and significantly associated with the 
frequency of using relatedness- supportive messages in class. No other significant associations between 
pre- service TSE dimensions and the frequency of other types of motivational messages were found.

Longitudinal relations between pre- service teacher self- efficacy and motivational 
messages

In the following, we report only significant effects of the six zero- inflated negative binomial models. 
All effect sizes are reported in Table 6.

Pre- service teachers' self- efficacy for instructional strategies
Pre- service TSE for instructional strategies (T1) was significantly and negatively related to the frequency 
of autonomy- supportive messages (T2) used (H2a). High pre- service TSE for instructional strategies (T1) 
decreased the frequency of using autonomy- supportive messages (T2) in class (Exp(β) = 0.72, p = .012).

T A B L E  3  Descriptive statistics for pre- service teachers' human- rated SDT- based motivational message use.

Motivational message

Total instances of 
motivational messages 
across all participants

Participants with at 
least one instance of a 
motivational message Inter- rater- reliability

Nmessages % Nparticipants % IRA (%)
Brennan-  
Prediger kappa κ

Autonomy- support 946 31.71 121 88.32 78.79 .72

Competence- support 879 29.47 110 80.29 72.51 .63

Relatedness- support 641 21.49 119 86.86 83.15 .78

Autonomy- thwarting 286 9.59 86 62.77 77.65 .70

Competence- thwarting 57 1.91 29 21.17 74.07 .65

Relatedness- thwarting 174 5.83 70 51.09 70.97 .61

Note: Instances of motivational messages = Frequency of messages used; IRA (%) = Inter- rater agreement in percentage (two human- raters); 
κ = Brennan–Prediger kappa.
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12 |   METZNER et al.

Pre- service teachers' self- efficacy for classroom management
Pre- service TSE for classroom management (T1) was significantly and positively related to the frequency 
of relatedness- supportive messages (T2) used (H2b). High pre- service TSE for classroom management (T1) 
increased the frequency of using relatedness- supportive messages (T2) in class (Exp(β) = 1.46, p = .003).

Pre- service teachers' self- efficacy for student engagement
Pre- service TSE for student engagement (T1) was significantly positively related to the likelihood of 
never using a competence-  or relatedness- thwarting message (T2) (H2c). Pre- service teachers with higher 
self- efficacy for student engagement (T1) were more likely to never use a competence-  (Exp(β) = 5.99, 
p = .003) or relatedness- thwarting message (T2) (Exp(β) = 3.13, p = .032).

Additional analysis on relations between pre- service teacher self- efficacy and 
LLM's predictions of supportive messages

The results of the analysis of the LLM's prediction of supportive messages in relation to pre- service 
TSE are presented in Table D1 in Appendix D. In the following, we only report the significant results.

In the LLM's prediction, pre- service TSE for instructional strategies (T1) was significantly and neg-
atively related to the frequency of relatedness- supportive messages (T2) used. High pre- service TSE 
for instructional strategies (T1) decreased the frequency of using relatedness- supportive messages (T2) 

T A B L E  4  The fine- tuned model's average performance.

Motivational messages F1- score Precision Recall Specificity

Autonomy support 0.73 (±0.01) 0.77 (±0.05) 0.71 (±0.03) 0.94 (±0.02)

Competence support 0.80 (±0.03) 0.81 (±0.07) 0.79 (±0.06) 0.95 (±0.02)

Relatedness support 0.79 (±0.04) 0.79 (±0.06) 0.80 (±0.03) 0.96 (±0.01)

Autonomy thwarting 0.57 (±0.06) 0.55 (±0.08) 0.62 (±0.09) 0.96 (±0.01)

Competence thwarting 0.27 (±0.16) 0.42 (±0.17) 0.22 (±0.14) 1.00 (±0.00)

Relatedness thwarting 0.61 (±0.05) 0.60 (±0.07) 0.63 (±0.05) 0.98 (±0.01)

Out- of- domain data 0.78 (±0.01) 0.77 (±0.02) 0.79 (±0.02) 0.88 (±0.02)

Note: The model's average performance across five runs.

T A B L E  5  Spearman's rank correlations for pre- service teachers' self- efficacy and motivational messages.

TSEIS TSECM TSESE SA SC SR TA TC TR

TSEIS –

TSECM .43** –

TSESE .53** .48** –

SA −.02 .10 .16 –

SC −.13 −.07 −.07 .02 –

SR .16 .33** .23* .23* −.20 –

TA .16 .11 .05 .10 .01 .09 –

TC .10 .18 −.10 .00 .08 .03 .27** –

TR .11 .13 −.02 .12 .03 −.02 .39** .27** –

Abbreviations: Frequency, Frequency of messages in ratio to words used; SA, Frequency of autonomy- supportive messages; SC, Frequency 
of competence- supportive messages; SR, Frequency of relatedness- supportive messages; TA, Frequency of autonomy- thwarting messages; 
TC, Frequency of competence- thwarting messages; TR, Frequency of relatedness- thwarting messages; TSEIS, Teacher self- efficacy for 
instructional strategies; TSECM, Teacher self- efficacy for classroom management; TSESE, Teacher self- efficacy for student engagement.
*p < .05. **p < .01.
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    | 13SDT- MESSAGES AND AI- BASED CLASSIFICATION

in class (Exp(β) = 0.71, p = .001). Furthermore, pre- service TSE for student engagement (T1) was sig-
nificantly and positively related to the frequency of relatedness- supportive messages (T2) used. High 
pre- service TSE for student engagement (T1) increased the frequency of using relatedness- supportive 
messages (T2) in class (Exp(β) = 1.32, p = .026).

DISCUSSION

In the study, we aimed to fine- tune an LLM to reliably assess pre- service teachers' SDT- based motiva-
tional messages. We also aimed to test the relations between different dimensions of pre- service TSE 
and the use of motivational messages. The fine- tuned LLM performed well in classifying pre- service 
teachers' motivational messages in four of the seven categories. Additionally, our findings with the 
human- rated annotations showed that pre- service TSE for classroom management positively affected 
the frequency of relatedness- supportive messages, while pre- service TSE for instructional strategies 

T A B L E  6  Results of the zero- inflated negative binomial models of pre- service teachers' self- efficacy and use of 
motivational messages.

Negative binomial count models Zero- inflated logit models

β SE p 95% CI Exp(β) β SE p 95% CI Exp(β)

Autonomy support

TSEIS −0.32 0.13 0.012 [−0.58, −0.07] 0.72 0.13 0.42 0.766 [−0.70, 0.96] 1.13

TSECM 0.07 0.10 0.484 [−0.12, 0.26] 1.07 −0.42 0.53 0.435 [−1.46, 0.63] 0.66

TSESE 0.26 0.17 0.126 [0.07, 0.60] 1.30 −0.25 0.64 0.702 [−1.50, 1.01] 0.78

Competence support

TSEIS −0.04 0.22 0.859 [−0.47, 0.39] 0.96 −0.19 0.55 0.723 [−1.27, 0.88] 0.82

TSECM 0.22 0.14 0.121 [−0.06, 0.50] 1.24 0.60 0.43 0.163 [−0.24, 1.44] 1.82

TSESE −0.36 0.28 0.195 [−0.90, 0.18] 0.70 −0.15 0.52 0.770 [−1.17, 0.86] 0.86

Relatedness support

TSEIS −0.17 0.13 0.176 [−0.42, 0.08] 0.84 −0.88 0.56 0.115 [−1.80, 0.22] 0.41

TSECM 0.38 0.13 0.003 [0.13, 0.63] 1.46 −0.35 0.46 0.449 [−1.09, 0.55] 0.71

TSESE 0.01 0.19 0.952 [−0.35, 0.38] 1.01 0.13 0.58 0.825 [−0.82, 1.26] 1.14

Autonomy thwarting

TSEIS 0.15 0.25 0.531 [−0.33, 0.64] 1.17 −0.31 0.46 0.508 [−1.21, 0.60] 0.74

TSECM 0.13 0.29 0.664 [−0.44, 0.70] 1.13 −0.11 0.45 0.805 [−0.98, 0.77] 0.89

TSESE −0.21 0.18 0.263 [−0.57, 0.15] 0.81 0.00 0.51 0.994 [−1.00, 1.00] 1.00

Competence thwarting

TSEIS −0.39 0.67 0.565 [−1.70, 0.93] 0.68 −0.95 0.64 0.137 [−2.19, 0.30] 0.39

TSECM 0.19 0.51 0.714 [−0.82, 1.19] 1.21 −0.93 0.57 0.101 [−2.05, 0.18] 0.39

TSESE 0.59 0.41 0.149 [−0.21, 1.39] 1.80 1.79 0.61 0.003 [0.59, 2.99] 5.99

Relatedness thwarting

TSEIS −0.32 0.29 0.266 [−0.88, 0.24] 0.73 −0.95 0.49 0.054 [−1.91, 0.02] 0.39

TSECM 0.09 0.17 0.609 [−0.25, 0.43] 1.09 −0.52 0.41 0.199 [−1.32, 0.27] 0.59

TSESE 0.19 0.27 0.493 [−0.35, 0.72] 1.20 1.14 0.53 0.032 [0.10, 2.19] 3.13

Note: Analyses were carried out with the robust MLR- estimator. Statistically significant results are shown in bold. TSEIS = Teacher Self- 
Efficacy for Instructional Strategies, TSECM = Teacher Self- Efficacy for Classroom Management, TSESE = Teacher Self- Efficacy for Student 
Engagement.
Abbreviations: TSEIS, Teacher Self- Efficacy for Instructional Strategies; TSECM, Teacher Self- Efficacy for Classroom Management; TSESE, 
Teacher Self- Efficacy for Student Engagement.
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14 |   METZNER et al.

negatively affected the frequency of autonomy- supportive messages. Moreover, pre- service TSE for 
student engagement increased the likelihood of never using a competence-  or relatedness- thwarting 
message. The following sections discuss the results in detail.

Fine- tuning and evaluation of an LLM to assess teachers' motivational 
messages

In our study, the categories of autonomy support, competence support, relatedness support and out- of- 
domain data obtained an F1- score above 0.70, indicating robust classification performance compared 
to studies in a similar domain (Falcon & León, 2024; Tan & Demszky, 2023). However, the fine- tuned 
LLM did not reach high F1- scores for classifying thwarting messages. We identified two challenges 
that may have contributed to reduced effectiveness in classifying thwarting messages. The first chal-
lenge is the imbalance of thwarting messages in the training set. Pre- service teachers used thwarting 
messages five times less frequently than supportive messages, resulting in the LLM not being trained 
with an equal amount of data across all categories. Augmenting the training data with AI- generated 
messages did not mitigate this issue. For further research, we suggest using a large and balanced data set 
of authentic classroom messages to achieve high accuracy in all categories. Additionally, if the data set 
is augmented with synthetic data through AI- generated messages, we recommend incorporating a few 
examples of the original messages in the instructional prompt (few- shot approach) to ensure that the 
synthetic examples more closely align with the linguistic patterns of authentic classroom data.

The second challenge we identified concerns the quality of the training data in terms of its distinc-
tiveness. LLMs are proficient in recognising data patterns; however, if the data exhibit high variability, 
the LLM may struggle to identify all linguistic patterns (Munappy et al., 2022). For instance, during the 
initial human annotation process, the raters used 23 sub- categories, which were later consolidated into 
six main SDT- based motivational message categories. The message data from these six main categories 
were used to fine- tune the LLM. However, due to the initial annotation involving 23 sub- categories, the 
LLM encountered a wide range of sub- themes and sub- patterns within the six main categories, which 
may have contributed to lower model performance. For future research, we recommend using clearly 
distinctive categories with consistent examples that exhibit low variability. A more detailed discussion 
of these challenges can be found in Metzner et al. (2025).

Relations between pre- service teacher self- efficacy and human- rated 
motivational message use

Our expectations about the relations between pre- service TSE and their use of SDT- based motivational 
messages were partially met. We did not find the assumed significant relations between pre- service TSE 
for instructional strategies and pre- service teachers' use of competence- supportive messages in class 
mid- semester (T2) (H2a). One possible explanation for this could be the complexity involved in deliver-
ing competence- supportive messages. Specifically, in the context of providing constructive feedback – a 
component of competence- supportive messages in our classification system – research has demon-
strated that teaching experience is positively related to the frequency and quality of feedback (Holstein 
et al., 2022). Our sample included only pre- service teachers, and thus the lack of years of teaching expe-
rience might be an explanation for the insignificant relation between their self- efficacy beliefs and their 
use of competence- supportive messages.

However, our results showed that pre- service teachers with high self- efficacy for instructional strate-
gies used autonomy- supportive messages significantly less frequently, which is in line with our expecta-
tions (H2a). One explanation for this finding could be that pre- service teachers with high self- efficacy for 
instructional strategies tend to emphasise strategies that promote learners' thinking through performance 
diagnostics and adjustments, such as implementing variousmanagement approach that conc assessment 
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    | 15SDT- MESSAGES AND AI- BASED CLASSIFICATION

strategies or providing appropriate challenges for learners (Tschannen- Moran & Hoy, 2001). Conversely, 
this could mean that pre- service teachers with high self- efficacy for instructional strategies prioritise cre-
ating an adaptive learning environment over implementing participative practices, such as autonomy- 
supportive messages in class. Moreover, pre- service TSE for instructional strategies was not significantly 
related to the use of relatedness- supportive messages, which is in line with our expectations (H2a).

Supporting our assumptions (H2b), our results showed a significant positive relation between pre- 
service TSE for classroom management and the frequency of relatedness- supportive messages. This 
finding aligns with Pianta's (2006) interpersonal classroom management approach that conceptualises 
classroom management as a dynamic process that describes positive teacher–student interactions as an 
inherent part of teachers' classroom management strategies enabling positive student behaviour and 
preventing misbehaviour (Pianta et al., 2012). Building on this approach, positive relations between pre- 
service TSE for classroom management and these pre- service teachers' use of relatedness- supportive 
messages can be understood as a dynamic teacher management process, where classroom interactions 
promote a relatedness- supportive learning environment.

Consistent with our assumptions (H2c), our findings revealed that pre- service teachers with high self- 
efficacy for student engagement were significantly more likely to never use a relatedness- thwarting message. 
Additionally, they were also significantly more likely to never use a competence- thwarting message, which 
we did not expect. Putwain and von der Embse (2018) hypothesised that in classes with unmotivated stu-
dents, teachers with lower self- efficacy beliefs for student engagement resort to more controlling teaching 
strategies, such as the use of fear appeals to engage students. In our study, we did not include student mo-
tivation data, but found a similar relation between high pre- service TSE for student engagement and the 
likelihood of not using a competence-  or relatedness- thwarting message. This implies that pre- service teach-
ers' beliefs about their ability to motivate students affect the probability that they will not use controlling 
language in class and they in particular are more likely to never use a competence-  or relatedness thwarting 
message. However, pre- service TSE for student engagement was not related to their use of autonomy-  or 
relatedness- supportive messages, which did not confirm our expectations (H2c). One possible explanation 
for this could be that the use of autonomy-  and relatedness- supportive messages could depend on, besides 
TSE, the quality of the teacher–student relationship. Research has shown that students' perceptions of the 
teacher–student relationship are longitudinally and positively related to their perceived autonomy and sense 
of relatedness in class (Bakadorova & Raufelder, 2018). In our study, pre- service teachers met the students 
only once and thus had limited time to learn students' individual interests, needs and motivation – factors 
essential for building effective teacher–student relationships (Pianta et al., 2012).

On a theoretical level, our findings imply that – in line with Tschannen- Moran et al.'s (1998) model – 
TSE is indeed affecting teachers' effort and behaviour in teaching situations. Our contribution to theory 
development is that we assessed teachers' verbal messages not through their own or students' self- reports, 
but through objectively assessing their verbal behaviours using classroom video data. Thus, motivational 
messages were shown in this study to be predicted by teachers' TSE dimensions, and thus could be a link 
from teachers' TSE to student motivation. However, as we did not have data on student motivation, we were 
only able to examine one side of this link. On a theoretical level, the underlying mechanism that may explain 
the significant effect of TSE dimensions on SDT- based motivational messages in our study could be that 
teachers who believe that they are able to motivate students also invest effort in doing so, and this is dis-
played in their language use in class. However, theoretically, to further validate this mechanism, analyses are 
needed in future research that include data on teachers' behavioural effort (e.g., time spent with unmotivated 
students in class using video data) as well as student data on student motivation as an outcome.

Relations between pre- service teacher self- efficacy and the LLM's 
predictions of supportive messages

We conducted an additional analysis examining the relation between pre- service TSE and the LLM's 
predictions of supportive messages. The results revealed different relations between pre- service TSE 
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and supportive message use compared to the regressions based on human coding. The analysis did not 
confirm the previously found path between pre- service TSE for instructional strategies and a lower 
use of autonomy- supportive messages. In the LLM- based analyses, pre- service TSE for instructional 
strategies impeded the likelihood of using relatedness- supportive messages. Thus, apparently, consid-
ering both sets of analyses, self- efficacy for instructional strategies cannot be considered as a relevant 
motivational factor contributing to need- supportive teachers' messages use.

Analyses based on human annotations showed that pre- service TSE for student engagement 
increased the likelihood of never using a competence-  or relatedness- thwarting message. In the 
LLM- based analyses, we were not able to include the thwarting messages because of their low reli-
ability, but extending the findings based on human annotations, LLM- based analyses showed that 
pre- service TSE for student engagement was positively related to the use of relatedness- supportive 
messages, which aligns with our expectations (H2c). We assume that these results may be due to the 
LLM incorporating additional relatedness- supportive patterns in the coding that were not included 
in the original coding scheme. For example, a closer examination of the LLM's predictions of sup-
portive messages revealed that the model classified phrases such as “Thank you for your writings. 
I really liked them.” as relatedness- supportive messages. However, the original coding scheme 
did not include student praise unless it explicitly referred to a specific course of action. A further 
analysis of the LLM's predictions regarding autonomy- supportive messages reveals that the LLM 
annotated sentences such as “Did the author capture the image well, or do you think this image is 
more suitable?” as an autonomy- supportive message. This sentence could reflect pre- service teach-
ers incorporating students' perspectives; however, in the initial coding scheme, we did not clas-
sify these kinds of messages as autonomy- supportive. In conclusion, the regression analysis using 
data from both human annotations and LLM predictions has shown that relatedness- supportive 
messages are associated with pre- service TSE, but the results vary slightly depending on the rater 
(human vs. LLM).

Taken together, although patterns of analyses based on human codings and based on LLM differed, 
the findings suggest that the LLM predictions may reveal additional meaningful insights. For instance, 
the relation between pre- service TSE for instructional strategies and relatedness- supportive messages 
in the human- coded data also showed a negative association, which was not statistically significant 
(β = −0.17, p = .176). This indicates that the association was present within both the LLM and human- 
coded data but could not be fully uncovered based solely on the annotated material. Additionally, as dis-
cussed earlier, the original coding scheme was complex due to a variety of sub- themes and sub- patterns. 
During the initial coding process, human raters could rely on contextual information from the broader 
classroom discourse to categorise messages. This ability may lead to more nuanced decisions, whereas 
the LLM might make more immediate classifications. Consequently, this could result in the LLM clas-
sifying more sentences as supportive messages overall due to its lack of access to broader contextual 
information.

Limitations and future directions

Regarding our first research question, the message categories of supportive messages and out- of- domain 
data obtained F1- scores above 0.70, indicating that the fine- tuned LLM can effectively classify these 
messages in a resource- efficient manner. However, the low frequency of thwarting messages among 
pre- service teachers led to lower model performance in detecting these specific message types. We 
recommend using a balanced training set across all message categories to enhance the performance 
of LLMs in classifying SDT- based messages from teachers, especially for those from minority classes, 
such as thwarting messages. Additionally, if training data augmentation with synthetic AI- generated 
messages is considered to expand the data set, we recommend using a few- shot approach. Moreover, 
we want to acknowledge that, in our study, the model's training data are situated in a specific context 
(i.e., pre- service teachers with limited teaching experience). To ensure that LLMs are robust, one should 
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test their performance in varied contexts, such as in samples of both pre- service and in- service teachers 
or with regard to specific school subjects, to verify that model predictions remain accurate across di-
verse teaching environments Wang et al., 2024. Given the large number of resources needed to classify 
teachers' messages using human raters in research processes, the LLM- based approach offers a promis-
ing, though not yet well- developed, pathway to more efficient and reliable assessments of teacher–stu-
dent speech and dialogues in classroom settings. This approach can provide deeper insights into social 
dynamics and motivational processes that have remained largely unexplored. Going beyond student 
self- reports to assess such messages, the LLM method provides a high degree of objectivity, allow-
ing researchers to validly assess classroom interactions while minimising the risk of common- method 
bias (Podsakoff et al., 2024) that may occur when both motivational messages and student outcomes 
rely solely on student ratings. Therefore, we believe LLMs hold significant potential to shape future 
educational research; however, further investigation is needed to fully understand their strengths and 
challenges. With regard to teaching practice, the use of a fine- tuned LLM has the potential to serve as 
an automated feedback tool for teachers regarding their use of instructional or motivational messages. 
This could enable instructors to independently monitor their speech and repeatedly receive feedback on 
the messages they employ (Demszky et al., 2024; Reeve & Cheon, 2021).

Regarding our second research question, the sample size of pre- service teachers considered was 
comparatively small, which led to low statistical power for testing. However, despite the subopti-
mal statistical power, we were still able to identify substantial effects of pre- service TSE on their 
motivational messages. Further studies are needed to validate our findings using larger data sets. 
Additionally, our study did not account for the speaker's tone of voice, although research has shown 
that a controlling tone of voice increases listeners' sense of pressure, decreases their willingness to 
cooperate and creates a sense of distance, regardless of the message (Vrijders et al., 2024). In this 
study, we focused on pre- service teachers in a Bachelor programme. Although it could be assumed 
that pre- service teachers have limited practical experiences and thus their self- efficacy beliefs might 
not realistically reflect their skills (for further discussion, see Klassen & Chiu, 2011), prior work has 
shown that pre- service TSE for student engagement positively predicts observer- rated emotional 
support during practical teaching experiences in schools (Hußner et al., 2024). Thus, it can be as-
sumed that even in early stages of pre- service teachers' studies, their self- efficacy already affects 
how they teach in class. Moreover, the pre- service teachers in our study participated in a course on 
motivation- enhancing teaching practices before teaching a lesson in a secondary school. The specific 
study context and the course materials they engaged with prior to teaching may have influenced 
their instructional practices and the motivational messages they employed in the class. To gain a 
clearer understanding of how pre- service TSE affects the motivational messages these pre- service 
teachers use, a control group of pre- service teachers who have not engaged with course materials on 
motivation- enhancing teaching would be required.

CONCLUSION

The fine- tuned LLM demonstrated promising performance in classifying supportive messages and out- 
of- domain data, suggesting it is a reliable tool for assessing pre- service teachers' SDT- based motivational 
messages. However, for the thwarting messages, the model's performance was insufficiently robust. 
Additionally, using the human annotations and the LLM predictions of motivational messages, our 
study demonstrated relations between pre- service TSE beliefs and their use of motivational messages. 
We showed that high pre- service TSE does not automatically relate to the likelihood and frequency of 
using motivational messages; rather, it depends on the specific dimension of self- efficacy, which will 
affect the dimensions of supportive and thwarting messages differently. Our research has practical 
relevance as the LLM- based models of teacher motivational messages can be leveraged in teacher edu-
cation, school practice and teacher training to develop personalised feedback tools for teachers that are 
evidence- based and tailored to individual in- class behaviours.
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A PPEN DI X B

B.1 | Initial classification experiments with LLMs
Prior to the fine- tuning experiments with the LLM Gemma 2 27B (Gemma Team, 2024), we conducted 
several experiments with various open- source LLMs. First, we explored in- context learning using the 
model LeoLM/leo- mistral- hessianai- 7b- chat (Plüster, 2023) and provided the model selected examples 
in a prompt to classify six labels. This approach yielded an accuracy of 0.27 and an F1- score of 0.18 in 
the 3- shot setting. Additionally, we experimented with a two- stage few- shot classification approach, 
where the model first distinguished between supportive and thwarting messages and then classified 
them as related to autonomy, competence or relatedness. For this approach, we used the DeBERTA- 
v3- large model (He et al., 2021) and obtained an accuracy of 0.53 and an F1- score of 0.49 in the first 
stage. In the second stage, we achieved an accuracy of 0.68 and an F1- score of 0.68. Furthermore, we 
tested fine- tuning methods with various LLM sizes, including Gemma- 7B (Banks & Warkentin, 2024), 
achieving an accuracy of 72.27% and an F1- score of 0.64.

F I G U R E  A 2  Pipeline Research Question 2.
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A PPEN DI X D

T A B L E  D 1  Results of the negative binomial models of pre- service teachers' self- efficacy and use of LLM predicted 
supportive messages.

β SE p 95% CI Exp(β)

Autonomy support

TSEIS 0.06 0.08 0.413 [−0.09, 0.21] 1.06

TSECM 0.06 0.06 0.284 [−0.05, 0.18] 1.07

TSESE −0.10 0.09 0.258 [−0.28, 0.08] 0.90

Competence support

TSEIS 0.03 0.10 0.748 [−0.16, 0.22] 1.03

TSECM −0.02 0.10 0.870 [−0.21, 0.17] 0.98

TSESE −0.02 0.12 0.867 [−0.25, 0.21] 0.98

Relatedness support

TSEIS −0.35 0.11 0.001 [−0.55, −0.14] 0.71

TSECM 0.05 0.08 0.497 [−0.10, 0.20] 1.05

TSESE 0.28 0.12 0.026 [0.03, 0.52] 1.32

Note: Analyses were carried out with the robust MLR- estimator. Statistically significant results are shown in bold.
Abbreviations: TSEIS, Teacher Self- Efficacy for Instructional Strategies; TSECM, Teacher Self- Efficacy for Classroom Management; TSESE, 
Teacher Self- Efficacy for Student Engagement.
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