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ABSTRACT
The word2vec word vector representations are one of the
most well-known new semantic resources to appear in recent
years. While large sets of pre-trained vectors are available,
these focus on frequent words and multi-word expressions
but lack sufficient coverage of named entities. Moreover,
Google only released pre-trained vectors for English. In this
paper, we explore an automatic expansion of Google’s pre-
trained vectors using Wikipedia, adding millions of concepts
and named entities in over 270 languages. Our method en-
ables all of these to reside in the same vector space, thus
flexibly facilitating cross-lingual semantic applications.
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1. INTRODUCTION
Motivation. Over the course of the last decade, we have
witnessed the growing popularity of large-scale semantic
databases and knowledge graphs, which are now important
assets for many big companies. Recently, however, another
form of semantic resource has been attracting enormous at-
tention. The word2vec models [32], in conjunction with the
corresponding tools and data released by Google Inc., allow
us to map words to dense vector representations such that
similar words are mapped to similar vectors in the corre-
sponding vector space. This approach has received signifi-
cant attention not only in natural language processing but
also in the broader community of practitioners working with
textual data and semantics. The three word2vec-related pa-
pers published by Mikolov et al. in 2013 have already gar-
nered more than 3,000 citations according to Google Scholar.

Such representations are also referred to as neural embed-
dings, since neural networks are used to learn a mapping
from objects into a vector space. The resulting vectors ex-
hibit a number of appealing properties. Not only do their
cosine similarities correlate well with human judgments of
word similarity and relatedness. They have also been found
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to reflect the commonsense knowledge and semantic knowl-
edge necessary for analogical reasoning [43]. Still, knowledge
graphs such as YAGO [24] and MENTA [14] have important
advantages with regard to their coverage of entities and their
support for multilingual and cross-lingual lookups.

Overview and Contributions. In this work, we inves-
tigate the intersection of these two directions of semantic
resources, creating vector representations not just for words
but also for the millions of multilingual named entities and
concepts described by Wikipedia. Specifically, we exploit
the fact that the pre-trained vectors released by Google al-
ready contain millions of frequent words and expressions
covered by the English Wikipedia as well as the fact that
the English Wikipedia contains numerous other named en-
tities and is linked to the over 200 other language editions
of Wikipedia. To facilitate this expansion process, we rely
on MENTA [14], a large multilingual knowledge graph that
conveniently transforms these over 200 language editions of
Wikipedia, in conjunction with the English WordNet [18],
into a single unified hierarchically organized network of en-
tities and natural language terms.

Drawing on word2vec as well as MENTA, we obtain a new
semantic embedding resource covering millions of words and
names in over 200 languages. For each of these, it provides
a numerical vector that can be used to quickly compute the
similarity between two nouns or entity names, even if they
are given in completely different languages. Experiments
on a series of semantic relatedness tasks show that this ap-
proach of drawing on knowledge bases compares favourably
against state-of-the-art approaches.

2. BACKGROUND
Semantic Representations. Traditional knowledge rep-
resentation has been inherently symbolic, making use of dis-
crete symbols such as entity IDs or URIs to represent entities
and their relationships. In many settings, such representa-
tions seem ideal to reliably capture and store a given set
of facts. Using symbolic subject-predicate-object triples, we
can easily represent that Kobe is located in Japan [8].

In many settings, however, especially when relying on
machine learning and certain kinds of artificial intelligence
methods, it can be important to exploit less explicit sig-
nals about entities. For instance, based on word frequency
counts, we may have an indication that there is a salient
association between Kobe and beef, but we may lack more
detailed knowledge about the nature of this association.

Machine learning algorithms also have trouble coping with
symbols that never or only rarely appeared in the training
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data. If every symbol is treated as completely distinct, then
machine learning techniques will often fail to make sensible
decisions for any new symbols appearing at test time. This
is an important challenge when working with textual data,
where one often faces the more specific problem of out-of-
vocabulary words, e.g. when machine translation systems
encounter new, previously unobserved words, and have no
clue about how to translate them.

Word Embeddings. In the past few years, word em-
beddings have quickly become the most well-known compu-
tational resource for representing word meanings [44, 32].
These word embeddings embed words in an n-dimensional
Euclidean vector space. While the specific dimensions do
not normally carry any particular meaning, the word vec-
tor mappings are optimized in a way that words that are
similar in meaning are mapped to similar vectors. Based on
this property, machine learning methods are equipped with
semantic information that enables them to transfer informa-
tion about observed words to previously unobserved ones.
This has proven particularly valuable for deep learning and
other neural models, which tend to favor dense represen-
tations over the rather sparse one-hot bag-of-words vector
representations. The latter have been prominent both in in-
formation retrieval and when transforming text into feature
vector representations suitable support vector machines [11].

Word vectors have quickly surpassed most previously used
linguistic resources in popularity. While part of this may be
hype, empirical studies show that neural network-based pre-
diction models for creating word vectors indeed outperform
several previous efforts at distributional semantics [1], al-
though it has also been shown that with the lessons we have
learned from these newer models, traditional matrix meth-
ods can also be adapted to obtain similar results [27].

Another factor that has contributed to the widespread
use of word2vec is the simplicity of working with word vec-
tors. For one, vector representations of words are elegantly
simple to use and understand, requiring only basic vector
arithmetic to obtain state-of-the-art results on certain lexical
tasks. At the same time, Google’s decision to release word
vectors pre-trained on a very large Google News dataset has
contributed to facilitating their widespread adoption. In-
terested practitioners can simply download the pre-trained
word vectors and immediately start mapping words to vec-
tors without having to procure any large text corpus for
training.

The original word2vec methods optimize the vectors by
relying on contextual information in a very large text cor-
pus [32]. The pre-trained word2vec vectors1 cover 3,000,000
terms, out of which 929,022 are single token terms and
2,070,978 are multi-word units. The latter were added to the
lexicon using a frequency heuristic, and some are named en-
tities, while others are short expressions and phrases. Still,
these pre-trained embeddings lack many less frequent named
entities that may not appear often enough in regular text
corpora. In particular, word2vec is normally run with a fre-
quency cut-off threshold, dropping all words that are less
frequent than this threshold. Although this threshold is a
parameter that can be modified, word2vec needs to observe
a word in a significant number of training contexts in order

1Available from Google at https://code.google.com/p/
word2vec/.

to be able to derive appropriate vector representations for
it.

Moreover, Google has only released vectors for English,
and training vectors for other languages requires customiza-
tion of the code to deal with issues such as tokenization and
non-Latin characters. If one does make these modifications,
one still arrives at vectors that are incompatible with the
existing English vectors. Our vectors in contrast, allow for
cross-lingual comparisons. We will thus be able to compare a
German word such as Tragfläche with an English expression
such as Lift-to-drag ratio.

3. ALGORITHMIC APPROACH

3.1 Concepts and Entities
Our work attempts to exploit WIkipedia (via the MENTA

resource [14]) to provide a simple yet effective means of
quickly obtaining high-quality vectors for millions of enti-
ties in over 200 languages.

Our approach assumes a universe U of objects that we
wish to map to vector representations in an n-dimensional
Euclidean space [0, 1]n ⊆ Rn. The objects to be mapped can
be linguistic expressions as well as sense or entity or concept
identifiers. Linguistic expressions are strings coupled with a
language identifier. Thus, the English word coin is treated
as distinct from the French word coin (corner). In addition
to such linguistic identifiers, which can be ambiguous, we
separately consider entity or concept identifiers that are in-
tended to be unambiguous. Thus, there is not just an entry
for the English term Georgia, which is ambiguous (possi-
bly referring to a country or to a US state, among other
meanings), but also specific identifiers referring specifically
to the country and state, as identified by their respective
Wikipedia article titles.

We further assume an input setX ⊆ U , and a setX0 of ob-
jects x ∈ X0 for which we have prior knowledge in the form
of coherent high-quality vector embeddings ṽx ∈ [0, 1]n. In
our experiments, we will use Google’s original word2vec em-
beddings, trained on a large Google News dataset, for this
purpose.

3.2 Training Objective
Our goal is to produce embeddings vi for all xi ∈ X.

In particular, for these vectors to be useful in downstream
machine learning algorithms and semantic tasks, we seek to
achieve this subject to the condition that dot products vt

ivj

for vectors vi, vj of object pairs xi, xj reflect some notion
of similarity between xi and xj .

As evidence of object similarities, we take as input a set of
known object relationships R ⊆ X ×X, with corresponding
weights wR(xi, xj) ∈ R. These object relationships can come
from one or more knowledge bases.

We first generalize wR(xi, xj) to a more general function

w(xi, xj) =

{
wR(xi, xj) (i, j) ∈ R
−1 otherwise

(1)
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Our training objective is then to maximize the following
function:

|X|∑
i=1

|X|∑
j=1

w(xi, xj)v
T
i vj

(2)

3.3 Optimization
For optimization, we rely on stochastic gradient ascent

steps [20], in which we iterate over R, in randomized order,
while also using negative sampling [32] to draw examples
with negative weights. Thus, the vectors of random positive
pairs from R are repeatedly adapted so as to increase their
similarity, while random negative pairs are encouraged to
have a lower similarity.

Before starting the optimization procedure, we preinitial-
ize the vectors vi for all xi covered by the initial prior knowl-
edge from Google’s pre-released word vectors, while all other
vectors are initially set to zero, so as to reduce the effect that
these vectors have on other vectors during the initial warm-
ing up phase. In each iteration, we select a random triple
from our knowledge base as input. This is a positive exam-
ple. For negative sampling, we also randomly replace the
subject or object with a randomly chosen entity and treat
this as a negative sample. We compute the gradient of our
objective function for these two samples and make a small
gradient optimization step to update the involved vectors.
The size of these steps is determined by the gradient itself
and by the learning rate, which, as is common practice, de-
creases over time [20], as explained in our experiments.

4. DATA AND TRAINING
Vectors. Our input word vectors are the well-known
word2vec Skip-Gram with Negative Sampling ones trained
on a large Google News corpus consisting of around 100
billion word tokens, and released for public use by Google2.

Knowledge Base. For the relationships between objects,
we rely on MENTA [14], which aggregates and transforms
information from WordNet [18] and over 270 language edi-
tions of Wikipedia. While Wikipedia already contains rich
semantic information, MENTA ensures that this knowledge
is connected to disambiguated lexicon entries in WordNet,
which is helpful for our method, as it enables us to reduce the
affect of noise due to ambiguous words and entries. For in-
stance, the original input vectors only contain a single entry
for an ambiguous name such as Georgia, while our resource
needs to create separate vectors for the US State of Georgia
vs. the country Georgia. We also include the original Word-
Net as input in order to have the upper-level hierarchy and
lexicon that MENTA builds upon.

An overview of the input relationships is given in Ta-
ble 1. The lexicalization relation connects entities to
their linguistic expressions, e.g. connecting the entity United

States of America to a number of English linguistic ex-
pressions, including United States of America, United States,
and USA, as well as to numerous non-English linguistic ex-
pressions. The instance of relation connects an entity such
as New York City to a class such as city, while subclass

of and the similar notion of WordNet hypernymy connect

2https://code.google.com/p/word2vec/

city to the more general, i.e., less specific class municipal-
ity.

For the relationship weights w(xi, xj), we simply use the
original weights given by MENTA, or 1 for unweighted rela-
tionships from knowledge sources such as WordNet that do
not provide weights.

Table 1: Input relationships.

Relationship Count (Word Pairs)

Lexicalization 21,257,844
Instance of 5,519,065
Subclass of 540,952
WordNet Hypernymy 94,769

Training. During training, we use stochastic gradient as-
cent with a starting learning rate of 0.1, which decreases by
a factor of 12 in every epoch over the knowledge base inputs.
In our experiments, we ran our algorithm for just 5 epochs,
as the results appear to stabilize rather quickly due to the
preinitialization.

5. EMPIRICAL EVALUATION
We next report the results of said training process and

evaluate the output using a number of evaluation datasets.

5.1 Coverage
In Table 2, we provide an overview of the resulting word

vectors in terms of their coverage. In total, our data covers
45 languages with at least 50,000 entries, 185 languages with
at least 1000 entries, and 297 languages with at least 100
words.

In addition to the named entities and words in different
languages, our approach also yields vectors for 5,722,950 dis-
ambiguated Wikipedia concepts (MENTA identifiers each
connected to Wikipedia pages in one or more languages)
and 114,538 disambiguated WordNet synsets.

In Table 3, we see that our output vectors show substantial
improvements in coverage on the Stanford Rare Words word
relatedness dataset [31], which also entail improvements in
the Spearman correlation with human judgements. We rely
on the standard Spearman ρ correlation coefficient, com-
puted with proper tie-breaking.

5.2 Semantic Relatedness
Apart from the Stanford Rare Words dataset mentioned

above, we further evaluated our results on the French JI-65
word relatedness dataset in Table 4, showing improvements
over previous work.

Next, in Table 5 we evaluated cross-lingual relatedness
results on the multilingual version of the RG65 data pro-
duced by Camacho-Collados et al. [3]. Since our resource
only covers nominal concepts covered by Wikipedia, our re-
source lacks certain terms such as the German grinsen (to
grin). Still, the results show that we obtain a comparable
vector quality, while covering a larger vocabulary.

5.3 Verbal IQ Synonymy Evaluation
Next, we considered the IQ test questions from Wang

et al. 2015 [45]. In their paper, they consider several dif-
ferent types of questions, each modeled separately. While
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Table 2: Coverage comparison, with total number of terms and multi-word terms (those containing a space
character)

Vectors Language # total terms # MWEs

Original Google News word2vec English 3,000,000 2,070,978

Our Approach English 6,477,502 5,100,963
French 1,117,508 866,470
German 880,206 583,267
Spanish 762,552 574,718
Portuguese 621,062 441,510
Italian 620,592 432,048
Polish 561,223 380,170
Russian 542,213 365,373
Dutch 509,650 279,227
Japanese 486,883 21,757
Swedish 357,827 237,554
. . . . . . . . .
All 18,704,387 12,395,795

Table 3: Spearman’s Correlation and Coverage on the Stanford Rare Word dataset by Luong et al. 2013 [31].
Vectors Spearman ρ Pair Coverage

Original word2vec 0.421 1863 (91.6%)
Our Approach 0.450 1987 (97.7%)

Table 4: Spearman’s Correlation on the French JI-65 dataset, a translation of the English RG65 dataset.
Vectors Spearman ρ

Granada et al. 2014 [21] 0.52
Faruqui & Dyer 2014 [17] 0.61
Camacho-Collados et al. 2015 [3] 0.71
Our Approach 0.724

Table 5: Spearman correlations on cross-lingual RG65 data by Camacho-Collados et al. 2015 [3].

Language 1 Language 2 Vectors Spearman ρ

English French CL-MSR 2.0 0.30
PMI-SVD pivot 0.76
word2vec pivot 0.75
ADW pivot 0.80
Camacho-Collados et al. 2015 [3] pivot 0.83
Camacho-Collados et al. 2015 [3] 0.83
Our Approach 0.815

English German PMI-SVD pivot 0.72
word2vec pivot 0.69
ADW pivot 0.73
Camacho-Collados et al. 2015 [3] pivot 0.73
Camacho-Collados et al. 2015 [3] 0.76
Our Approach 0.764

French German PMI-SVD pivot 0.65
word2vec pivot 0.77
ADW pivot 0.72
Camacho-Collados et al. 2015 [3] pivot 0.79
Camacho-Collados et al. 2015 [3] 0.83
Our Approach 0.782

46



our objective does not include a model of relations such as
antonymy, we can easily evaluate our vectors on their syn-
onymy dataset. For this, we simply evaluate the cosine sim-
ilarities of words’ vector representations to choose the most
similar answer.

The results in Table 6 show that our approach not only
improves over the original results, which serve as our input.
Surprisingly, both of these outperform the method by Wang
et al. [45], the creators of the dataset, although their method
is supervised in the sense that their training objective ex-
plicitly attempts to reproduce large amounts of semantic
relationships collected from dictionaries. We additionally
outperform the Multi-Sense Vectors from Huang et al. 2012
[25], in terms of the evaluation results reported by Wang et
al. 2015 [45]. Interestingly, in their study, humans underper-
formed on this task, although we conjecture that this might
be due to the crowdsourcing approach chosen for assessing
human performance.

5.4 Reader’s Digest Word Choice Problems
Next, we experimented with a German-language word

choice quiz dataset3. This dataset contains 984 problem
instances collected from the 2001 to 2005 editions of the
German version of Reader’s Digest Magazine, where they
appear as “Word Power” problems.

Given a target word and four candidate phrases, the goal is
to select the phrase that describes the target word. Consider
the following English language examples.

gourmet dale
a) enjoys cooking a) plain
b) has indigestion b) retreat
c) has an expert appreciation of food c) shelter
d) is hungry d) valley

Here, the correct answers are c) for gourmet and d) for
dale. Picking the right answers hinges not only on our fa-
miliarity with a given word and its meaning but also on our
ability to relate it to the descriptions provided as candidate
answers.

We rely on the simple method of computing cosine simi-
larities between the target word and the candidate answers.
Some answers are individual words or expressions already
covered in our data, in which case this is simple. If a can-
didate answer, however, consists of multiple words that are
not covered in our data as a multi-word expression, we sim-
ply use the maximum cosine similarity between any of the
words in the answer phrase and the target word.

We assess the accuracy as the sum of scores over all prob-
lem instances divided by the number of problem instances.
Following the convention from previous work [33], these eval-
uation scores are 1 if the correct answer is ranked highest
among all candidates by our method, 0 if it is not ranked
highest, and 1

n
if our method’s top ranked answers form a

tie of n answers with the same similarity score.
The results are provided in Table 7. We see reasonable re-

sults, outperforming the German-English vectors from Chan-
dar et al. 2014 [4]. Note that by random guessing, as for the
original word2vec vectors, which do not cover German, one
obtains only 25%. Of course, our results are not perfect,
since we are applying simple word vectors to a task that re-

3https://www.ukp.tu-darmstadt.de/data/
semantic-relatedness/german-word-choice-problems/

quires understanding entire linguistic phrases. Better results
could easily be obtained by improving the linguistic analysis
of candidate answers, for instance by performing lemmati-
zation, stop word removal or interpretation, and compound
splitting, which, of course, is particularly helpful for German
with its notoriously long compound nouns. After that, one
could then use our vectors to obtain more reliable similarity
scores.

6. RELATED WORK
Knowledge Bases. Many well-known semantic resources
are symbolic in the sense that there are discrete items with
discrete properties. While traditional knowledge bases often
used knowledge representation formalisms closely related to
formal logics [12, 41], modern knowledge graphs tend to rely
on simpler labeled graphs, in which nodes represent arbi-
trary entities and edges represent their connections. Exam-
ples of such knowledge graphs include Freebase and YAGO
[24]. Beyond simple subject-predicate-object triples, such
knowledge graphs can also incorporate multimodal data [42].
Many current knowledge graphs further include linguistic
and lexical knowledge [38, 9], and thus can be connected
to resources such as WordNet [18], while even non-linguistic
ones are also based on Wikipedia. Due to these connections,
it has been possible to create massively multilingual knowl-
edge graphs that cover entities and concepts in numerous
languages [13, 14].

Embeddings from Wikipedia. Different approaches
have been presented to go beyond discrete symbolic knowl-
edge. Distributional semantic approaches exploit cooccur-
rence patterns between words to induce high-dimensional
vector spaces [39]. Techniques such as latent semantic anal-
ysis [15] rely on document-word matrices. Gutiérrez et al.
2016 [22] proposed a method to create and use multilingual
topic models, which encode probabilistic distributions over
concepts.

In recent years, low-dimensional vector embeddings of
words have proven very popular as representations [44].
When releasing word2vec [32] to the public, Google itself
published not only word vectors, but also vectors for Free-
base entity identifiers. These were obtained by detecting and
disambiguating named entities using an automatic entity
linking approach and then applying the standard word2vec
SGNS model. However, this approach only covers named
entities frequent enough to appear in the corpus and the
resource that they produced does not share the same em-
bedding space with the regular word vectors that they re-
leased. Additionally, it uses custom entity IDs that are no
longer generally supported, given that Freebase has been
retired and has not been accepting updates for a long while
now. A related tool has been released (https://github.
com/idio/wiki2vec) to enable using Wikipedia as a corpus
for DBpedia vectors. However, this approach only addresses
a single language at a time and cannot support cross-lingual
similarity computations.

Relational Learning. Another related but distinct line of
work has focused on relational learning and link prediction.
The goal of this is to learn a model that is able to predict re-
lationships between entities. In particular, this can involve
predicting whether a given relationship holds between two
entities, or, e.g., given subject France and relation hasCap-

italCity, the goal could be to predict the entity Paris. In
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Table 6: Accuracy results on MSR Synonym IQ test questions

Dataset Accuracy

Avg. Human (as reported by Wang et al. 2015 [45]) 50.38%
Multi-Sense Model 50.00%
Supervised Model by Wang et al. 2015 [45] 60.78%
Original word2vec 62.75%
Our Approach 66.67%

Table 7: Accuracy results on German word choice problems

Vectors Accuracy

Random guessing / Original word2vec input vectors 25.00%
Chandar et al. 2014 [4] En-De Vectors 27.35%
Our Approach 49.70%

recent years, the methods that accomplish such tasks have
often relied on tensor modeling as in RESCAL [34] and the
Neural Tensor Network model [40], or on even simpler vec-
tor and matrix representations. The TransE model [2], for
instance, treats relations as simple translations between two
vectors. More recently, numerous variations of TransE have
been proposed to account for specific phenomena. TransH
[46], for instance, models relations as translations on hyper-
planes. TransR [29] adds extra projections of entity vectors
for each specific relation, or, in the CTransR variant, for
each cluster of relations. PTransE [28] attempts to con-
sider inference via property paths to improve the prediction
of a triple (for example, x bornInCity y, y cityInState

z helps us predict x bornInState z). Although some of
these methods incorporate learning vector representations
of entities, these are just a byproduct. It has been shown
that link prediction methods lead to substantially different
vector representations than those produced by corpus-based
word vector learning methods [6]. In particular, such rep-
resentations tend not to yield high correlations with human
similarity judgments [6].

Extending Embeddings. There have been several pre-
vious efforts to extend pre-existing word vectors using ad-
ditional resources. Some approaches rely on linguistic re-
sources. For instance, Rothe & Schütze [37] presented an
autoencoder neural network that can be used to derive word
vectors for WordNet lexemes and synsets from undisam-
biguated word vectors. Faruqui et al. 2015 [16] showed that
lexical resources such as WordNet, PPDB, and FrameNet
can be used to improve the quality of word vectors. Previ-
ous work has also shown that translation information such
as from Wiktionary can be used to extend word2vec and
GloVe word vectors [10].

Another line of work follows a more generic data-driven
approach. In particular, Loza Menćıa et al. showed that
jointly representing words, documents, and document labels
can lead to improved embeddings [30]. Chen & de Melo 2015
[5] presented a joint optimization framework that simulta-
neously learns word embeddings from a corpus and from
extractions mined from text, focusing especially on lists of
similar words. Chen et al. 2016 [6] extended this idea by
jointly modeling fact extractions using relation-specific ma-
trices. Their approach jointly optimizes for link prediction

of the sort mentioned above and corpus-based word vector
learning.

However, none of these approaches come even close in
terms of coverage to the large-scale extension by many mil-
lions of named entities that we present here.

Entity and Fact Similarity. There have also been other
approaches to computing similarities between Wikipedia en-
tries. Paulheim 2013 [35] developed the DBpedia Find-
Related service to find related entities. It relies on SVMs
trained using external information coming from Web search
engines and thus benefits from additional data that we do
not consider in our approach. Pereira Nunes et al. 2012 [36]
relied on a graph relation-based approach. Unlike these ap-
proaches, our method jointly creates representations both of
Wikipedia entries and of the terms that they represent and
can thus be evaluated using word similarity datasets, while
for DBpedia entries, to the best of our knowledge, no gold
standard relatedness dataset exists, although the creation
of such datasets has been considered before as future work
[35]. Another advantage of our approach is that it is also
easily possible to obtain assessments for ambiguous terms
such as Java or Jaguar, and our method directly supports
words and named entities given in hundreds of languages.

Finally, a related but distinct problem is that of group-
ing together semantically similar facts [19, 7, 23, 26]. Here
the objects to be related are entire subject-predicate-object
statements rather than just entities. Methods that achieve
this are useful, for instance, in user interfaces for browsing
structured data.

7. CONCLUSION
We have shown that by drawing on a joint optimization

objective, we are able to leverage Wikipedia and its transfor-
mation in the MENTA knowledge graph to induce a large
joint embedding space. This leads to a novel kind of re-
source that can not only replace the original word vectors
but also supports certain kinds of lexical semantic operations
that are not as easily achievable with the original Wikipedia
or MENTA resources. Importantly, we can compute simi-
larities between arbitrary entities, being able to use either
disambiguated identifiers or ambiguous words and names in
different languages. Overall, we obtain a resource that is
compatible with the original word2vec representation space
but adds millions of named entities in over 200 languages.
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