
EXACTA : Explainable Column Annotation

Yikun Xian
1∗
, Handong Zhao

2†
, Tak Yeon Lee

2
, Sungchul Kim

2
, Ryan Rossi

2

Zuohui Fu
1
, Gerard de Melo

1
, S. Muthukrishnan

1

1
Rutgers University, New Brunswick, NJ

2
Adobe Research, San Jose, CA

yx150@cs.rutgers.edu,{hazhao,talee,sukim,ryrossi}@adobe.com

{zuohui.fu,gerard.demelo}@rutgers.edu,muthu@cs.rutgers.edu

ABSTRACT
Column annotation, the process of annotating tabular columns

with labels, plays a fundamental role in digital marketing data gov-

ernance. It has a direct impact on how customers manage their

data and facilitates compliance with regulations, restrictions, and

policies applicable to data use. Despite substantial gains in accuracy

brought by recent deep learning-driven column annotation meth-

ods, their incapability of explaining why columns are matched with

particular target labels has drawn concern, due to the black-box

nature of deep neural networks. Such explainability is of particular

importance in industrial marketing scenarios, where data stewards
1

need to quickly verify and calibrate the annotation results to ascer-

tain the correctness of downstream applications. This work sheds

new light on the explainable column annotation problem, the first

of its kind column annotation task. To achieve this, we propose a

new approach called EXACTA, which conducts multi-hop knowl-

edge graph reasoning using inverse reinforcement learning to find

a path from a column to a potential target label while ensuring

both annotation performance and explainability. We experiment

on four benchmarks, both publicly available and real-world ones,

and undertake a comprehensive analysis on the explainability. The

results suggest that our method not only provides competitive an-

notation performance compared with existing deep learning-based

models, but more importantly, produces faithfully explainable paths

for annotated columns to facilitate human examination.

CCS CONCEPTS
• Information systems → Data analytics; Data mining.

KEYWORDS
Column Annotation, Explainability, Knowledge Graph Reasoning

1
Data stewards are responsible for interpreting regulations, contractual restrictions,

and policies, and applying them directly to data, and thus are central to data governance.

∗
This work was partially done during the author’s internship at Adobe Research.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467211

“com”

Contact

abc@google.com

xyz@gmail.com

…

e-mail

world@ms.com

1035@mit.edu

…

Companies

www.adobe.com

www.microsoft.com

…

Info

302349@qq.com

hello@icloud.me

…

High

Label: URL

Label: Email
Target Label? Why?

has_keyword

Freq. of “@”

has_keyword

has_keyword

Freq. of “@”

match
match

match

Figure 1: Explainable column annotation via multi-step rea-
soning over a KG to find the target label “Email” for the
source column “Contact” with the accompanying explain-
able paths marked by red and black arrows.

ACM Reference Format:
Yikun Xian, Handong Zhao, Tak Yeon Lee, Sungchul Kim, Ryan Rossi,

Zuohui Fu, Gerard de Melo, S. Muthukrishnan. 2021. EXACTA : Explain-

able Column Annotation. In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’21), August 14–
18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3447548.3467211

1 INTRODUCTION
Structured tabular data are commonly acknowledged as a conven-

tion for recording relational information with wide application

in data management systems and can be consumed to develop

business insights and benefit decision-making in industry. One im-

portant task in the early stages of a tabular data analysis pipeline is

called column annotation [6, 15, 22, 28], which aims to match table

columns to annotation labels. Take the digital marketing industry

as an example: annotated columns usually serve as the input of

downstream tasks and a missing or false annotation of a personally

identifiable information (PII) column may cause a severe privacy

leakage. To comply with the General Data Protection Regulation

(GDPR) [1], industry experts such as data stewards and marketers

are required to manually verify the correctness of the labeling,

which usually incurs enormous costs in both time and effort. To

accelerate the human evaluation process, automated labeling tools

are preferred, which ought to obtain good accuracy in column anno-

tation while providing an explanation to the experts to justify why

particular decisions are made. We refer to this as the explainable
column annotation task. Existing approaches are mostly accuracy-

driven, seeking superior annotation performance via modern deep

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3775

https://doi.org/10.1145/3447548.3467211
https://doi.org/10.1145/3447548.3467211
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447548.3467211&domain=pdf&date_stamp=2021-08-14

neural networks [6, 7, 15, 42]. However, they have critical limita-

tions in industry scenarios due to their lack of explainability and

trustworthiness for the experts who conduct manual verification.

To meet both requirements, knowledge graph (KG) reasoning

[20] has been widely adopted in link prediction [23, 31, 41], recom-

mendation [39, 40], etc. The benefits are that it can not only achieve

competitive performance with deep neural networks but also gener-

ate explainable KG paths that allow tracing back the entire decision-

making process. Motivated by this, we explore approaching the

task of explainable column annotation under the framework of KG

reasoning. Specifically, a KG is built over all columns, annotations,

and their extracted features. Then, a model iteratively traverses this

graph from a starting column node towards a candidate label node.

The inferred path directly reflects the multi-step decision-making

and hence can serve as an explanation for the prediction. As an

example, in Fig. 1, the column “Contact” is expected to be matched

with the label “Email”, which can be reached by navigating along

the evidence path “Contact”
freq. of “@”
−−−−−−−−−→ “com”

freq. of “@”
−−−−−−−−−→ Column

“Info”
match
−−−−−−→ “Email”.

Recent work on KG reasoning primarily relies on reinforcement

learning (RL) techniques [23, 37, 41], i.e., a policy network is first

learned over a KG-based Markov decision process and then used

to conduct multi-step reasoning from an unlabeled source node

to a potential target node as the prediction. However, the major

challenge of these methods lies in the manual definition of the

reward function: it is easy to specify relevance between sources and

targets, but very hard to quantify the explainability of intermediate

nodes. This may result in spurious paths that do not genuinely

confer explainability of the column annotation results. For instance,

there are two possible paths between the column “Contact” and
label “Email” in Fig. 1, marked by red and black arrows, respectively.

However, the black-arrowed path is intuitively less explainable

than the other one due to the keyword “com” being too vague with

regard to the label. If we only define a sparse reward on the last

step at label “Email”, the RL agent is very likely to opt for the less

explainable path, since both paths result in the same cumulative

rewards. To avoid handcrafting rewards, a common alternative

solution is to leverage imitation learning (IL), which requires high-

quality trajectories to learn a policy via supervised learning or

behavior cloning [16, 26, 44]. In real industry settings, however,

it is easier to acquire large-scale noisy path data from less-skilled

crowdsourced workers than carefully labeled data from experts. As

a trade-off, the quality of these paths may be unsatisfactory, e.g., due

to the lack of knowledge of business scenarios, the crowdsourced

workers may choose less explainable paths than those preferred

by the experts. Thus, conventional IL methods are not adapted for

training the graph traversal model, as they do not explicitly tolerate

noise in the inputs and may lead to suboptimal choices of paths.

To address this, we propose a novel KG reasoning method named

EXACTA for EXplAinable Column anoTAtion based on the frame-

work of inverse reinforcement learning (IRL). Given a set of noisy

explainable paths between columns and labels, EXACTA first learns

a noise-tolerant reward function from the paths, which is then

harnessed to guide policy learning such that the policy-based KG

walker can generate both accurate predictions and explainable

paths via multi-hop reasoning. Our method is specially designed to

cope with industry-scale column annotation tasks, as it does not

require high-quality expert-labelled paths to train the policy, but

can still produce faithfully explainable paths for its predictions. We

experiment on four diverse benchmarks, both publicly available

and real industrial ones, and the results not only demonstrate bet-

ter column annotation performance compared to various baselines,

but, importantly, also show better explainability by our model. The

following four aspects highlight our contributions.

• To the best of our knowledge, this is the first work formally

studying the problem of explainable column annotation. We ar-

ticulate the importance of this problem in industrial marketing

data management pipelines.

• We propose EXACTA, a novel IRL-based KG reasoning approach,

that can automatically learn a noise-tolerant reward function

from noisy input paths to guide the policy learning.

• We experiment on four offline real-world benchmarks and con-

duct an online simulation of explainable column annotation, ob-

serving promising results of EXACTA in annotation performance.

• We also systematically evaluate the explainability of our model

in terms of perceived explainability, robustness, and faithfulness

of the path-based explanations.

2 PRELIMINARIES
Problem Formulation We consider the explainable column an-

notation problem in the framework of knowledge graph reasoning.

Formally, given an entity set E and a relation set R, a knowledge

graph (KG) for column annotation, denoted by G, is defined to be a

set of triples, G = {(e, r , e ′) | e, e ′ ∈ E, r ∈ R}, where each triple

represents a fact between a head entity e and a tail entity e ′ via re-
lation r . There are two special subsets of entities in the KG, namely

columns X ⊆ E and labels Y ⊆ E. The relation connecting them,

denoted by r
match

∈ R, means a column is matched (or annotated)

with a label. We assume that each column can only be matched

with one correct label via relation r
match

. The remaining entities

in E \ {X ∪ Y} stand for the explainable features extracted from

columns and labels such as keywords and statistical values, and the

relations in R \ {r
match

} reflect the has-a property of columns and

labels with respect to these features. For instance, a triple (“Contact”,
has_keyword, “com”) expresses that the column “Contact” ∈ X has

the property of being associated with the keyword (i.e., relation

has_keyword ∈ R \ {r
match

}) with value “com” ∈ E \ {X ∪ Y}.

The details of the KG construction process are described in the

Appendix. By taking advantage of the rich heterogeneous infor-

mation and relational graph structure in the KG, we are interested

in predicting (i) the missing links of relation r
match

for unmatched

columns, and (ii) an explanation for the matching decision. In this

work, we define an explanation for the column–label pair (x,y) to
be a KG reasoning path, which is a sequence of entities and rela-

tions, denoted by L = {e0, r1, e1, . . . , el−1, rl , el | e0 = x, el = y, l ∈
R+, (et−1, rt , et) ∈ G,∀t ∈ [|L|]}. The KG-enhanced explainable

column annotation problem is formulated as follows.

Definition 1. (Explainable Column Annotation) Given a KG G,
the goal is, for every unmatched column entity x ∈ X, to predict a
label entity y ∈ Y along with a reasoning path L of nodes from x to
y that serves as the explanation for the annotation (x,y).

The challenges of this problem are threefold.

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3776

• Faithful Explanation. The explanation is required to be faithful to

the decision-making process, which means the reasoning path

should reflect the actual multi-hop inference process of the model,

and the visited nodes along the paths should be the genuine

causes of the model’s annotation outcome.

• Unknown Target. Since the annotation results are derived with

the path-finding process, the target node is unknown prior to

the KG reasoning, which makes it hard for the agent to determine

if the next step will potentially lead to a “correct” label node.

• Noisy Paths. Since the input paths are noisy and not warranted to
be the most explainable, a good solution should explicitly model

such noise and be robust to the diverse quality of the explainable

paths, so that it can find optimal paths in the inference step.

(Inverse) Reinforcement Learning A finite Markov Decision

Process (MDP) in reinforcement learning (RL) is defined as a tu-

ple (S,A,p(st+1 |st ,at),R(st ,at)) with state st ∈ S, action at ∈

A, transition probability p(st+1 |st ,at) and reward function R :

S × A 7→ R for each step t ∈ [T]. The goal of RL is to find a

policy π (at |st) over the MDP that maximizes the expected cu-

mulative rewards, i.e., Eτ∼pπ (τ)[
∑
(st ,at)∈τ R(st ,at)], where τ =

{s1,a1, s2, . . . , sT ,aT , sT+1} denotes a trajectory sampled from the

distributionpπ (τ) = p(s1)
∏T

t=1 p(st+1 |st ,at)π (at |st). The discount-
ing factor is ignored for simplicity.

One limitation of RL occurs when the reward function is unavail-

able and hard to define in practice [26]. An alternative solution is

to adopt the notion of inverse reinforcement learning (IRL), which

aims to learn the reward function from expert trajectoriesD = {τ }.
The common approach to the IRL problem is under the framework

of maximum-entropy IRL (ME-IRL) [44], which models the proba-

bility of a trajectory by the maximum entropy principle [17], i.e.,

pϕ (τ) =
1

Zϕ
p(s1)

∏T
t=1 p(st+1 |st ,at)e

Rϕ (st ,at)
, where Rϕ (st ,at) is

the estimated reward function parametrized by ϕ and Zϕ is the

partition function defined over all possible trajectories. ME-IRL

learns ϕ by maximizing the log-likelihood of pϕ (τ) over all training
trajectories, which leads to the following optimization problem:

maxϕ
1

|D |

∑
τ ∈D

∑
(st ,at)∈τ Rϕ (st ,at) − logZϕ . Once the reward

function Rϕ is derived, we can further learn the policy π over the

MDP with the estimated rewards.

3 OUR METHOD
In this section, we propose a new method called EXACTA, which

casts explainable column annotation as a KG-based IRL problem.

As illustrated in Fig. 2, it iteratively learns the reward function from

noisy explainable paths and the policy with the estimated rewards,

so that the agent is able to find high-quality explainable paths

leading to the correct target labels for the given source columns.

3.1 Formulation as IRL Problem
KG-based MDP At each step t ∈ [T], the state st is defined to

be the joint representation of the starting column x ∈ X and the

current entity et−1 ∈ E, i.e., st = (x, et−1), with the initial state s1 =
(x, x). The valid action space of the state st consists of all outgoing
edges of the current entity, At = {(rt , et) | (et−1, rt , et) ∈ G}.

We also add a special Stop action that allows the agent to stop at

the current entity. Given the state st and an action at = (rt , et) ∈

At , the transition probability is p(st+1 |st ,at) = 1 if st+1 = (x, et)
and 0 otherwise. A KG path L = {x, r1, e1, . . . , eT−1, rT ,y} can

be identically converted to a trajectory τ = {s1 = (x, x),a1 =
(r1, e1), s2 = (x, e1), . . . , sT = (x, eT−1),aT = (rT ,y), sT+1 = (x,y)},
so we will use them interchangeably. This definition of MDPs over

KGs is commonly adopted by existing work [23, 41], however, its

limitation is also obvious, i.e., node out-degrees determine the sizes

of the discrete action space, which may vary significantly among

different states and become space-inefficient in policy network

implementation. Therefore, we reformulate the MDP in continuous

space by vectorizing each entity and relation bymeans of pretrained

KG embeddings
2
, with state st = [x; et−1] ∈ S ⊆ R2d and action

at = [rt ; et] ∈ A ⊆ R2d , for t ∈ [T]. Hered is the dimensionality of

entity and relation embeddings and [;] denotes concatenation. The

actual reward is unknown and estimated by the function Rϕ (st ,at)
with parameters ϕ.

IRL-based Objective Given a set of noisy (less explainable)

paths of correctly labeled columns, we aim to learn the reward

functionRϕ to indicate both the explainability of moving to the next

node and the probability of arriving at the correct label eventually.

Then, the optimal policy π (at |st) can be learned via RL with the

help of the estimated rewards by Rϕ .
To explicitly model the behavior of crowdsourced workers, we as-

sume each noisy trajectory τ̃ = {s1, ã1, s2, . . . , sT , ãT , sT+1} is gen-
erated following aworker policywithGaussian noisepω (ãt |st ,at) =
N (ãt |at , Σω (st)). That is, each noisy action ãt ∈ A is sampled from

a multivariate Gaussian distribution with a mean of the optimal

action at and a state-dependent covariance Σω (st) = diag(FFω (st)),
which is a diagonal matrix with values approximated by a multi-

layer feed-foward neural network FFω with parameters ω.
Accordingly, the probability of the noisy trajectory τ̃ is p(τ̃) =

p(s1)
∏T

t=1 p(st+1 |st , ãt)p(ãt |st), which can be rewritten via pω as:

p(τ̃) = p(s1)
T∏
t=1

∫
at ∈A

π (at |st)pω (ãt |st ,at)dat , (1)

where p(s1) is the constant probability of the initial state, and the

transition probability p(st+1 |st , ãt) = 1 is ignored in Eq. 1. Inspired

by ME-IRL [44], we also model the probability p(τ̃) with the reward

function Rϕ (st ,at) under the maximum-entropy principle as

pϕ,ω (τ̃) =
1

Zω ,ϕ
p(s1)

T∏
t=1

∫
at

eRϕ (st ,at)pω (ãt |st ,at)dat , (2)

Here Zω ,ϕ is the partition function defined over all trajectories

with fixed horizonT . By plugging pω (ãt |st ,at) = N (ãt |at , Σω (st))
into Eq. 2, we can simplify the model as follows:

pϕ,ω (τ̃) =
1

Zω ,ϕ
p(s1)

T∏
t=1

∫
at

efϕ ,ω (st ,at ,ãt)dat , (3)

fϕ,ω (st ,at , ãt) = Rϕ (st ,at) −
1

2

(
D2

ω (ãt) + log det(Σω (st))
)

(4)

Here, Dω (ãt) =
√
(ãt − at)⊤Σ

−1
ω (st)(ãt − at) is the Mahalanobis

distance between ãt and ã. The constant term in the Gaussian

distribution is disregarded, as it will not be used in the optimization.

2
We adopt TransE [4] in this work, which can be replaced by other KG embeddings.

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3777

(a) KG for Column Annotation

𝒚𝒚𝟏𝟏

𝒚𝒚𝟐𝟐

𝒘𝒘𝟏𝟏

𝒇𝒇𝟏𝟏

𝒇𝒇𝟐𝟐

𝒙𝒙𝟏𝟏

𝒘𝒘𝟐𝟐

𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝒓𝒓𝟏𝟏

𝒓𝒓𝟐𝟐
𝒓𝒓𝟑𝟑

𝒓𝒓𝟒𝟒

𝒓𝒓𝟓𝟓

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑

𝒙𝒙𝟒𝟒

?

Input noisy paths (�𝝉𝝉)

Policy Network

Reward function

Variational Dist. Worker Policy
𝒒𝒒𝝍𝝍(𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕, �𝒂𝒂𝒕𝒕)

𝝅𝝅𝜽𝜽(𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕)

𝒑𝒑𝝎𝝎(�𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕)

KG Env.
𝒑𝒑(𝒔𝒔𝒕𝒕+𝟏𝟏|𝒔𝒔𝒕𝒕, �𝒂𝒂𝒕𝒕) 𝒔𝒔𝒕𝒕 𝒂𝒂𝒕𝒕

�𝒂𝒂𝒕𝒕 = 𝒂𝒂𝒕𝒕 + 𝝈𝝈𝝐𝝐𝒕𝒕

𝝐𝝐𝒕𝒕 ∼ 𝑵𝑵(𝟎𝟎, 𝑰𝑰)
Loss 𝓛𝓛𝒓𝒓𝒓𝒓

𝒔𝒔𝒕𝒕, �𝒂𝒂𝒕𝒕 𝒂𝒂𝒕𝒕

𝑹𝑹𝝓𝝓(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕)𝒔𝒔𝒕𝒕

𝑹𝑹𝝓𝝓(𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕)𝒑𝒑𝝎𝝎(�𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕)

Augmented trajectories (𝝃𝝃)
𝒚𝒚𝟐𝟐

𝒘𝒘𝟏𝟏

𝒇𝒇𝟏𝟏

𝒇𝒇𝟐𝟐
𝒙𝒙𝟏𝟏

𝒘𝒘𝟐𝟐

𝒙𝒙𝟑𝟑

𝝅𝝅𝜽𝜽(𝒂𝒂𝒕𝒕|𝒔𝒔𝒕𝒕)

0.4

0.3

0.1

0.7

0.3

0.9

0.1

𝒚𝒚𝟐𝟐
match𝒙𝒙𝟏𝟏

𝒙𝒙𝟒𝟒

X

X X
X

Loss
𝓛𝓛𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

(b) IRL-based Training Framework (c) Inference Stage

Path reasoning via Policy Network

Decision:

Explanation

Figure 2: Pipeline of EXACTA. (a) A KG is constructed with columns, labels, and explainable features. (b) Given noisy paths,
the reward function and policy network are iteratively learned under the IRL framework with explicit noise modeling via the
worker policy. (3) KG reasoning is conducted to generate an explainable path and predicted label for the column.

Eq. 3 implies that the higher the quality of an explainable path, the

more rewards it is likely to confer to the agent.

Let
˜D = {τ̃ } be the set of input noisy trajectories. We can learn

the reward function Rϕ and the worker policy pω by maximizing

the log-likelihood of pϕ,ω (τ̃) over all trajectories in ˜D:

max

ϕ,ω

1

| ˜D|

∑
τ̃ ∈ ˜D

T∑
t=1

log

∫
at

efϕ ,ω (st ,at ,ãt)dat − logZϕ,ω . (5)

3.2 Training Framework
However, directly solving Eq. 5 is intractable in practice due to the

integral over the large-scale continuous action space. We adopt the

variational approach [18] to change the integral into an expectation

by introducing additional variational distributions.

Specifically, for the first logarithm term in Eq. 5, we introduce

a variational distribution qψ (at |st , ãt) approximated by a neural

network parametrized byψ . For each noisy path τ̃ ∈ ˜D, we have

T∑
t=1

log

∫
at

efϕ ,ω (st ,at ,ãt)dat =
T∑
t=1

logEat∼qψ

[
efϕ ,ω (st ,at ,ãt)

qψ (at |st , ãt)

]
≥

∑
(st ,ãt)∈τ̃

Eat∼qψ
[
fϕ,ω (st ,at , ãt) − logqψ (at |st , ãt)

]
(6)

= L
path

(ϕ,ω,ψ ; τ̃),

where Eq. 6 is derived via Jensen’s inequality and the expecta-

tion can easily be approximated via Monte Carlo methods [34].

Note that

∑T
t=1 log

∫
at

efϕ ,ω (st ,at ,ãt)dat = maxψ L
path

(ϕ,ω,ψ ; τ̃).

Therefore, we can first estimate ψ by maximizing the objective

L
path

and then solve the original problem in Eq. 5, which is equiv-

alent to

max

ϕ,ω

1

| ˜D|

∑
τ̃ ∈ ˜D

L
path

(ϕ,ω, ˆψ ; τ̃) − logZϕ,ω , (7)

where
ˆψ = argmaxψ L

path
(ϕ,ω,ψ ; τ̃).

Then, we can approach the partition function in Eq. 7 in a similar

way, which can first be expanded as follows.

logZϕ,ω = log

∫
τ̃ ∈(S×A)T

(
p(s1)

T∏
t=1

∫
at

efϕ ,ω (st ,at ,ãt)dat

)
dτ̃

= log

∫
ξ ∈(S×A×A)T

p(s1)
T∏
t=1

efϕ ,ω (st ,at ,ãt)dξ (8)

Here, ξ = {s1,a1, ã1, . . . , sT ,aT , ãT , sT+1} denotes the augmented

trajectory with paired actions {(at , ãt)}t ∈[T]. To simulate the gener-

ation process of augmented trajectory ξ , we assume that the optimal

action at is first sampled from the policy network πθ (at |st) and
then the noisy action ãt is sampled from another Gaussian noise

distribution N (ã |at ,σ
2I). Note that we cannot adopt the worker

policy pω here to sample noisy action ã, as it is based on the as-

sumption of crowdsourced workers generating noisy paths, while

here it corresponds to a different MDP setup with paired actions. To

simplify the computation of ãt in practice, we can sample Gaussian

noise ϵt ∼ N (0, I) and then compute ãt = at +σϵt , which is known

as the reparameterization trick [19]. Accordingly, the probability

of ξ is pθ (ξ) = p0
∏T

t=1 p(st+1 |st ,at + σϵt)πθ (at |st)N (ϵt |0, I).
Thus, we can introduce the distribution πθ (at |st)N (ϵt |0, I) into

Eq. 8 to eliminate the integral via the variational approach:

logZϕ,ω = logEξ∼pθ

[T∏
t=1

efϕ ,ω (st ,at ,ãt)

πθ (at |st)N (ϵt |0, I)

]
(9)

≥ Eξ∼pθ

[T∑
t=1

fϕ,ω (st ,at , ãt) − logπθ (at |st) +
1

2

∥ϵt ∥
2

]
(10)

= Eξ∼pθ

[T∑
t=1

Rϕ (st ,at) − logπθ (at |st)

]
+ дω = L

rl
(ϕ,ω, θ),

where дω = Eξ [
∑T
t=1 σ

2
tr(Σ−1ω (st)) + log det(Σ

−1
ω (st))] is a regular-

ization term on parameter ω. Eξ∼pθ [
∑T
t=1

1

2
∥ϵt ∥

2] in Eq. 10 is a

constant based on the quadratic form of random variables and is ig-

nored. It is easy to find that logZϕ,ω = maxθ Lrl
(ϕ,ω, θ), which re-

sults in an RL problem for which we can learn the policy πθ over the

MDPwith paired action (at , ãt) and the estimated rewardRϕ (st ,at).
Hence, another benefit of this formulation is that we can adopt any

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3778

state-of-the-art RL algorithm (e.g., PPO [35] in this work) to learn

the optimal policy π
ˆθ (at |st) with

ˆθ = argmaxθ Lrl
(ϕ,ω, θ).

The ultimate goal is to maximize the following objective:

L(ϕ,ω; ˜D) =
1

| ˜D|

∑
τ̃ ∈ ˜D

L
path

(ϕ,ω, ˆψ ; τ̃) − L
rl
(ϕ,ω, ˆθ). (11)

The IRL-based learning framework is illustrated in Fig. 2(b) and the

complete training pipeline is summarized in the Appendix.

3.3 Inference
In the inference stage, as shown in Fig. 2(c), we leverage the learned

policy network πθ (at |st) to walk over the KG from an unmatched

column step-by-step towards a potential label node. Specifically,

given a (t−1)-hop path Lt−1 = {x, r1, e1, . . . , rt−1, et−1}, we first
obtain the mean action vector ât = πθ (at |st) by taking as input the
state vector st = [x; et−1]. Then we select top k outgoing edges by:

{(rt , et) ∈ G | et < Lt−1, rank(∥ât − [rt ; et]∥22) ≤ k}. (12)

By extending the path Lt−1 with these k edges, we obtain k t-hop
paths, each of which is further extended until the length reaches

the horizon T . At the end, at most O(kT) paths will have been

generated and we rank them according to the cumulative rewards

by Rϕ along each path. The top-ranked reasoning path is expected

to end with the correct label and the nodes along the path faithfully

explain the decision-making process.

4 EXPERIMENTS
We extensively evaluate our method in terms of both the annota-

tion performance and the explainability on two publicly available

datasets and two genuine industry datasets. We aim to answer the

following three research questions via experiments.

• RQ1: How is the column annotation performance of the proposed

EXACTA compared to prior work? (Section 4.2)

• RQ2: Does our method provide good explainability for column

annotation despite the noisy input paths? (Section 4.3)

• RQ3: What other factors may influence the annotation perfor-

mance? (Section 4.4)

4.1 Experimental Setup
Datasets We experiment with four real-world datasets from both

public sources and industrial platforms. WWT is an open-sourced

dataset [2] originally used for query search on web tables. It con-

tains over 18,000 columns, about 460,000 rows, and 160 unique

annotation labels derived from ontology entities. Retailer is

a real industrial dataset collected from the Adobe Analytics plat-

form
3
, which records customer relationship management (CRM)

and customer web browsing data. It comprises 16,500 columns and

33 unique manually-annotated labels and each column can harbor

thousands of values of diverse data types. WebTable78 is a subset

of WebTable collections [5] for semantic data type detection on col-

umn cells. It consists of 5 disjoint datasets including approximately

80,000 columns labeled with 78 classes in total. Marketing is

another industry dataset collected from the Adobe Marketo Engage-

ment Platform
4
, which manages marketing across various channels

3
https://www.adobe.com/analytics/adobe-analytics.html

4
https://www.marketo.com/adobe-experience-cloud/

Table 1: Statistics of the KGs constructed on four datasets.

Dataset #columns #labels #entities #relations #triples

WWT 18,670 160 52,755 150 3.503M

Retailer 16,500 33 48,015 150 2.213M

WebTable78 80,000 78 42,515 148 13.409M

Marketing 23,835 81 44,050 148 6.157M

(e.g., email, text messages, etc). It contains around 24,000 columns

with 81 unique labels. Note that WebTable78 and Marketing
are more challenging, as they do not include column header names.

For each dataset, we perform a random split into 60% of columns

for training, 20% for validation, and 20% for testing.

KG construction and path generation We construct a KG

for each dataset by extracting explainable features from columns

and labels following a previous study [15]. These include cell-level

statistics (e.g., mean number of numerical characters in column),

character-level statistics (e.g., mean number of “@” in each cell),

keywords in cells, headers, and label descriptions. The statistics of

the four KGs are given in Table 1 and the details of KG construction

are described in the Appendix. In order to obtain large quantities of

paths without quality guarantees, we randomly sample 3 to 5 paths

for each training column, and then ask crowdsourced workers to

manually assess whether these paths are suitable as explanations

for the column–label pairs. A score of “0” is assigned to a path

if it does not make any sense for the pair and “1” otherwise. We

discard all paths with “0” scores and keep an average of 1.756 paths

that are deemed “somewhat explainable” per training column–label

pair over all 4 datasets. Note that these paths are not the most

explainable and serve as the noisy input trajectories for our model.

Baselines We mainly consider the following three categories

of baselines. Rule-based methods are earlier techniques for col-

umn annotation that are explainable but less effective. Deep neural

network based approaches show better performance but the an-

notation mechanism is opaque to humans due to their black-box

nature. KG-based methods rely on the same constructed graph to

make predictions with path-based explanations.

• Rule-based methods: LexicalMatch [30] is an early heuristic

approach that detects column types by collecting frequent lexical

keywords across all columns. DSL [28] is a representative column

annotation model that exploits column features and makes its

prediction via a random forest.

• Deep neural networks: ColNet [6] is a deep neural model that

relies on an external knowledge base to identify column types to-

gether with entity lookup voting. Sherlock [15] is a deep neu-

ral model that also utilizes the features extracted from columns.

SATO [42] is the state-of-the-art neural model based on Sherlock

with additional topic modeling components. For a fair compari-

son, we train these models with the cell-level statistical features,

character-level statistical features, and pretrained word2vec [27]

features, which are consistent with our KG-based model.

• KG-based approaches: TransE [4] is a KG embedding technique

via vector translation operations. We also use it to initialize the

state and action representation in our model. RotatE [36] is

an advanced KG embedding modeled in a complex vector space.

ME-IRL [44] is an IRL method that learns rewards from expert

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3779

Table 2: Benchmark results of our method compared to other baseline approaches on four datasets for the column annotation
task. The best results are highlighted in bold and the second best results are underlined.

WWT Retailer WebTable78 Marketing

Methods F1 Hits@1 Hits@3 Hits@5 F1 Hits@1 Hits@3 Hits@5 F1 Hits@1 Hits@3 Hits@5 F1 Hits@1 Hits@3 Hits@5

LexicalMatch 0.2479 0.2545 0.3438 0.3638 0.3741 0.4173 0.5252 0.5576 0.4268 0.4344 0.5155 0.5454 0.5362 0.5339 0.6122 0.6294

DSL [28] 0.3649 0.3957 0.5728 0.6464 0.7856 0.8009 0.9988 0.9994 0.5132 0.5262 0.6493 0.7093 0.6226 0.6440 0.6705 0.6831

ColNet [6] 0.4148 0.4332 0.6429 0.7125 0.7592 0.7706 0.9921 0.9994 0.5133 0.5173 0.6589 0.7217 0.7005 0.7202 0.9240 0.9328

Sherlock [15] 0.4437 0.4735 0.6524 0.7293 0.7724 0.7988 1.0000 1.0000 0.5714 0.5852 0.7183 0.7735 0.7400 0.7889 0.9901 0.9952

SATO [42] 0.4387 0.4664 0.6681 0.7296 0.7974 0.8188 1.0000 1.0000 0.6244 0.6279 0.7476 0.7873 0.7692 0.7975 0.9903 0.9960

TransE [4] 0.4347 0.4563 0.6924 0.7768 0.7771 0.8030 1.0000 1.0000 0.5352 0.5233 0.6867 0.7517 0.7567 0.7712 0.9874 0.9937

RotatE [36] 0.4835 0.5150 0.7282 0.7911 0.8111 0.8303 1.0000 1.0000 0.5858 0.5753 0.7233 0.7853 0.7661 0.7953 0.9863 0.9937

ME-IRL [44] 0.3250 0.3372 0.5305 0.5968 0.7250 0.7458 0.9154 0.9525 0.4483 0.4928 0.6193 0.6598 0.6057 0.6209 0.8815 0.9052

KGRL [23] 0.4049 0.4304 0.6623 0.7453 0.7927 0.8102 0.9858 0.9994 0.5025 0.5121 0.6805 0.7422 0.7397 0.7428 0.9808 0.9916

EXACTA (ours) 0.5080 0.5308 0.7353 0.7966 0.8406 0.8527 1.0000 1.0000 0.6358 0.6347 0.7566 0.7949 0.7973 0.8155 0.9921 0.9976

trajectories via the max-entropy principle. KGRL [23] is the state-

of-the-art RL-based KG reasoning model to predict missing links.

The implementation of our method is described in the Appendix.

For each dataset, we tune each method on the validation set, and

repeatedly run it 5 times on the test set and report average perfor-

mance on four metrics (F1 score, hit rate@1, 3, and 5).

4.2 Experiment on Column Annotation
Wefirst evaluate the column annotation performance of our method

compared to the selected baselines (RQ1). The benchmark results

of all methods across the four datasets are reported in Table 2.

Overall, we observe that our method EXACTA shows superior

performance over other baselines on all benchmarks in terms of F1

and Hits@k. For example, on the WWT and Retailer datasets, our

model obtains around 5.06% and 3.64% improvement in F1 score,

and 3.07% and 2.70% in Hits@1 over the best baseline RotatE. Our

model can also handle the very challenging case of column headers

being entirely missing, as we see that the results are still promising

on WebTable78 and Marketing. This indicates that our KG
reasoning method can also deliver an accurate labeling even if

header keywords are absent in the KG.

It is of particular interest to see that our model outperforms other

KG embedding models and RL-based KG reasoning methods. As we

adopt TransE embeddings for initializing state and action represen-

tations, the considerable gains achieved by our model indicate that

explicit KG reasoning yields additional information such as useful

features to deliver final predictions. At the same time, our model

also outperforms KGRL and ME-IRL by a large margin across all

benchmarks. The former only learns the policy from handcrafted

rewards, while the latter learns rewards without accounting for

potential noise in the input paths. Hence, the results imply that

the performance gap mainly stems from the superior quality of the

reward functions, which cause the model to learn a good policy.

We also notice that the KG-based methods (e.g., RotatE) gener-

ally work better than the deep neural networks (e.g., SATO) on the

datasets with column headers (WWT, Retailer). After checking
the header names with the label names and description, we find

headers to be a strong indicator for annotation, e.g., “email” is the

common keyword in some columns and the label in the Retailer

dataset. In addition, all models attain much better performance

on two industrial datasets (Retailer, Marketing) than on the

others (WWT, WebTable78). After investigating column content

in the datasets, we find this performance gap is caused by data intri-

cacies and ambiguity. For instance, many columns in WWT consist

of names of people but are annotated with diverse labels such as

“actors”, “footballer”, “presidents”, etc. This makes annotating this

dataset particularly challenging unless one incorporates additional

features to introduce world knowledge regarding the profession of

a person. On the contrary, most columns in the Retailer dataset

are fairly easy to recognize and hence one quickly approaches 100%

top 5 accuracy. For example, an “ID” column consists entirely of

integer values, which can be discerned using the statistical features.

4.3 Experiment on Explainability
In this experiment, we comprehensively evaluate the explainability

of KG reasoning paths emitted by our model in terms of perceived

explainability, robustness, and faithfulness (RQ2).

4.3.1 Expert Evaluation of Perceived Explainability. We first study

the perceived explainability of our model compared with other KG

reasoning baselines (ME-IRL, KGRL) and random path sampling.

We experiment on two industrial datasets (Marketing and

Retailer) and collaborate with 5 human experts who are spe-

cialized in the digital marketing platform and familiar with the

domain.
5
For each dataset, we randomly select 50 column–label

pairs that are correctly predicted by our model. For every such pair,

we run 4 algorithms that each generate a path of fixed length 3,

resulting in 4 paths for the pair. Upon completion of the procedure,

we collect 400 explainable paths in total from these algorithms on

two datasets. Human experts are requested to rate each path along

a 5-point Likert scale, where “5” means the path is completely ex-

plainable for the prediction, while “1” means the path does make

any sense. We consider the path relevance to be the perceived

explainability score given by the participants.

We report the average scores of 4 algorithms given by 5 experts

in Table 3. Overall, our method obtains a substantially better per-

ceived explainability compared to all the baselines. Specifically,

our model outperforms the other IRL-based method ME-IRL, which

establishes that our method is able to findmore explainable interme-

diate nodes despite being trained on unreliable input paths, while

ME-IRL is affected by noise in the input trajectories. Meanwhile,

both of the IRL-based methods achieve better explainability than

5
Note that we cannot experiment on the other two datasets due to a lack of experts

who can evaluate explanations with specialization in those domains.

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3780

Methods Retailer Marketing

Random 2.29±1.60 2.08±1.23

KGRL 2.41±1.56 2.03±1.22

ME-IRL 3.20±1.21 2.28±0.93

Ours 3.49±1.15 2.55±0.86

Table 3: Average perceived ex-
plainability (with std. dev.) of
4 methods on 2 datasets.

2 3 4 5
Different Lengths of Explainable Paths

1

2

3

4

A
ve

ra
ge

S
co

re
s

Retailer

Marketing

Overall

Figure 3: Perceived explain-
ability of our method on var-
ious path lengths.

the RL method, which merely has comparable performance with

random path sampling. This implies that such RL-based methods

completely fail to distinguish the explainability of different paths

between the same column–label pair.

4.3.2 Path length on perceived explainability. We further evaluate

the influence of the path length on the perceived explainability and

attempt to answer what the most suitable length is for explanatory

purposes. For each of two datasets, we adopt the same 50 column–

label pairs as in the last experiment but generate further paths of

length 2, 4, 5 by our model. We again ask 5 human experts to score

the perceived explainability of the paths.

As shown in Fig. 3, we find that the highest score across both

datasets is achieved when the path length is 3, which is slightly

higher than the length of 2, but significantly preferred over longer

paths. We further check the paths generated in this experiment

and find that shorter paths contain mostly more comprehensible

features such as keywords, whereas longer paths tend to consist

of less understandable statistical features. Intuitively, if the path

length is overly restricted, people may not recognize the reasoning

process as legible and logical. However, when the path becomes

too long, it may fail to possess meaningful explainability, due to

the presence of various redundant reasoning steps.

4.3.3 Robustness to Very Noisy Input Paths. Recall that when gener-
ating training paths annotated by crowdsourced workers in Section

4.1, we only keep the “1”-scoring random paths but discard all the

“0”-scoring random paths, as they are deemed not at all explain-

able. In this experiment, we evaluate how these very noisy paths

as training data influence the perceived explainability of our model

compared to the regular IRL method (ME-IRL). Specifically, we add

the “0”-scoring paths to the training set at different ratios of 0%, 20%,

and 40% among all paths. Both our model and ME-IRL are retrained

with these new training paths, while maintaining all other settings

as in the default setup. The perceived explainability is evaluated in

the same way as in the previous experiments.

The average scores of the two methods are plotted in Fig. 4.

We observe that our method (blue curve) consistently achieves

better perceived explainability than ME-IRL across both datasets.

Furthermore, the gap between the methods grows as further noisy

paths are included in the training set, which implies our method

is more capable of coping with noise during training and is more

robust to varying degrees of quality of the input training data.

4.3.4 Faithfulness of Feature Explainability. In addition to the hu-

man evaluation, we further quantitatively measure the faithfulness

of explainability, i.e., the extent to which explanations provided by a

model genuinely inform the predictions. Motivated by recent work

0.0 0.2 0.4
Ratio of noisy paths

2

4

A
ve

ra
ge

S
co

re Ours

ME-IRL

0.0 0.2 0.4
Ratio of noisy paths

0

2

4

A
ve

ra
ge

S
co

re Ours

ME-IRL

(a) Retailer (b) Marketing
Figure 4: Perceived explainability of our method and ME-
IRL when trained with varying percentages of noisy paths.

in the field of NLP [8], we adopt two metrics known as comprehen-
siveness and sufficiency to evaluate the faithfulness of the generated

explanation. Specifically, let x be a column associated with a set

of extracted explainable features and f (x) be an annotation model

that takes the column x as input and emits top k predicted labels

along with k explainable features vk (or feature nodes connecting

columns). With the annotation metricm(·), e.g., Hits@k, we define

comprehensiveness hcom and sufficiency h
suf

as:

hcom =
1

|Xtest |

∑
x ∈Xtest

m(f (x)) −m(f (x\vk))

m(f (x))
(13)

h
suf
=

1

|Xtest |

∑
x ∈Xtest

m(f (x)) −m(f (vk))

m(f (x))
(14)

Here, x\vk denotes the column excluding the predicted k features.

Note that the metrics hcom and h
suf

focus on the difference ratio

of the model performance, assessing to what extent the features

contribute to the prediction. Therefore, these new metrics eliminate

the effect of absolute differences in performance between models.

We set k = 5 in this experiment. A high score of hcom indicates the

extracted explanations vk indeed influence the annotation, while

h
suf

captures the degree to which the extracted explainable features

are adequate for the model to make predictions.

We consider two sets of baselines in this experiment, including

model-agnostic approaches and KG-based approaches. Methods in

the first category (LIME [32], Anchor [33]) can be applied to any

deep classifiers (e.g., SATO) to generate explainable features, and

hence the two faithfulness metrics can be directly calculated on

the test set. KG-based approaches (KGRL, ME-IRL and ours) first

generate reasoning paths and then extract the feature nodes con-

necting the start column in KG. The comprehensiveness is computed

by removing all these features nodes and their edges from the KG,

while sufficiency is obtained by removing outgoing edges of the

column that do not belong to the extracted features.

The results are reported in Table 4. A possible reason that SATO

with LIME is not competitive is that it does not specify which local

feature space is applicable. It always yields explanations that may

vary considerably for different neighborhoods in the feature space.

Compared to the model-agnostic approaches, the graph-based ex-

plainable methods are able to provide more faithful feature entities

within the reasoning paths. We observe that features extracted by

our method indeed make a notable contribution, especially for the

sufficiency evaluation. With extracted top-k features only, it is rea-

sonable that SATO’s performance will drop substantially, whereas

our graph-based approach is able to maintain the path inference pro-

cedure, which quantitatively proves the faithfulness of the model’s

explainability.

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3781

Table 4: Evaluation of faithfulness of the explainability

Retailer Marketing

Methods hcom ↑ h
suf

↓ hcom ↑ h
suf

↓

SATO + LIME 0.024 0.519 0.019 0.601

SATO + Anchor 0.029 0.480 0.022 0.584

KGRL 0.035 0.184 0.029 0.227

ME-IRL 0.041 0.143 0.035 0.209

Ours 0.070 0.116 0.058 0.165

4.4 Ablation Study
We further seek a better understanding of what other factors may

influence the performance of our model (RQ3).
4.4.1 Influence of quantity of input paths. In this experiment, we

evaluate if our model requires a large amount of training paths

as input and how the performance will change with less training

data. Specifically, for each of two industrial datasets, we only retain

paths for 90%, 80%, 70%, 60%, 50% of the input columns while leaving

the rest of the columns with no corresponding paths. We retrain

our model with these smaller-sized training sets and report F1

scores of our model and the best baseline in Fig. 5. We find that

the performance drop is within an acceptable range, i.e., even if

50% of the columns are left without training paths, our model still

achieves comparable results to the best baseline. The benefit is

that our model does not require enormous amounts of training

paths, which saves much effort in manual labeling of high-quality

explainable paths.

4.4.2 Influence of maximum path length. We further evaluate how

different maximum path length (i.e., horizons) T influence the an-

notation performance of our model. In general, larger values of T
result in longer paths and hence make it harder to reach the correct

destination in KG reasoning. The resulting F1 scores of our method

on two industrial datasets are reported in Fig. 6. We observe that

the best performance is consistently achieved when T = 3, which

achieves results comparable to the case of T = 2, but performs

substantially better than when operating with longer horizons. The

underlying reason for these findings is that when reasoning for

longer numbers of steps, one is more likely to arrive at spurious

nodes instead of a potentially correct target.

4.5 Online Simulation
Finally, we internally evaluate our model for column annotation

in the digital marketing domain. Specifically, we compare with a

deployed model that only predicts the annotation for each column

without providing explanations, to see if our model can bring per-

formance gains in annotation prediction and genuinely improve the

work efficiency of the human experts in evaluating the labels. The

experiment is conducted on a newly dumped dataset about retail

management including around 1,000 unlabeled columns, each of

which belongs to one of the labels in the Retailer dataset. Thus,

each model is trained on the historical Retailer dataset and

then makes predictions on around 500 columns that are randomly

partitioned from the new dataset. To simulate the real column an-

notation scenario, the derived results by both models are presented

to the human experts who verify the correctness of the prediction.

Note that our model also generates additional explanations for the

human, and for simplicity in presentation, the explanation is only

1.0 0.9 0.8 0.7 0.6 0.5
Ratio of input paths

0.80

0.85

A
nn

ot
at

io
n

F
1 Ours

RotatE

1.0 0.9 0.8 0.7 0.6 0.5
Ratio of input paths

0.76

0.78

0.80

A
nn

ot
at

io
n

F
1 Ours

SATO

(a) Retailer (b) Marketing
Figure 5: Column annotation performance (F1) of our
method trained with various portions of input paths com-
pared to the best baseline on two industrial datasets.

2 3 4 5
Max Path Lengths

0.800

0.825

0.850

A
nn

ot
at

io
n

F
1 Ours

RotatE

2 3 4 5
Max Path Lengths

0.750

0.775

0.800

A
nn

ot
at

io
n

F
1 Ours

SATO

(a) Retailer (b) Marketing
Figure 6: Column annotation performance (F1) of our
method when varying the maximum step size in reasoning
compared to the best baseline on two industry datasets.

made of important features extracted by our model rather than the

whole path. The results show that our model achieves an accuracy

of 85.26% on average compared to 82.54% by the deployed model.

More importantly, the human experts expend around 12% less time

evaluating the results by our model than those by the existing one,

which confirms that the additional explanations provisioned by our

model are beneficial for the human verification process.

5 RELATEDWORK
Column Annotation The task of column annotation involves

annotating an entire tabular column with a semantic label. Cell-

level or row-level annotation tasks (e.g., knowledge base entity

alignment [9, 29]) are not considered in this paper because they

are designed for a different granularity of data. Early works on

column annotation usually embraced rule-based methods. Many

open-source and commercial systems [10, 24] adopt regular expres-

sion and dictionary methods to match columns with predefined

patterns or keywords. Ramnandan et al. [30] propose a frequency-
based method with heuristics to detect data types of table columns.

However, these rule-based methods lack extensibility to unseen

data and require considerable effort to manually manage rules.

Another line of recent research relies on machine learning tech-

niques to address the problem. Limaye et al. [22] annotate tables
with types using probabilistic graphical models. Pham et al. [28]
extract statistical features from tables and use random forests to pre-

dict the annotations. However, the performance of these methods

heavily depends on handcrafted features and they have less gener-

alizability compared to deep learning methods, which have recently

been adopted to learn rich features from tabular data. Chen et al.
[6] embed context information in the model by first looking up cells

to retrieve entities in a knowledge base, followed by a prediction

step to estimate the classes via a convolutional neural network and

majority voting. Chen et al. [7] propose another hybrid deep neural
network by exploiting table locality features and inter-column se-

mantic features. Zhang et al. [42] integrate deep learning and topic

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3782

modeling to annotate columns with semantic types. Hulsebos et
al. [15] directly extract richer features, including semantic features

such as word embeddings and paragraph embeddings and then

invoke a deep neural network to classify the label. These methods

achieve superior annotation performance compared to the previous

models due to the representational power of deep neural networks.

However, the issue of explainability remains under-explored, de-

spite being crucial in real industry business scenarios.

KG Reasoning for Explainable Prediction KG reasoning is

known for its transparent decision making process via multi-hop

reasoning and has been widely explored in missing link prediction

[23, 31, 41], recommendation [38–40, 43], conversational systems

[11–13], content denoising [21]. For instance, Ai et al. [3] first pro-
posed to leverage the KG path as an explanation of a recommenda-

tion, which was shown to be effective in boosting the user shopping

experience. Different from recommendations, the problem of col-

umn annotation is challenging due to the complexity and intricacies

of tabular data. Moreover, none of these works evaluate the quality

of the explainable paths, while we collaborate with domain experts

to comprehensively evaluate the path explainability.

6 CONCLUSION
We proposed a novel KG reasoning model under the IRL framework,

called EXACTA, to approach the explainable column annotation

task, which plays an important role in industrial digital marketing

data pipelines. Our method automatically learns a noise-tolerant

reward function from noisy, potentially less explainable paths to

guide the policy learning process such that the agent is able to

reason over the KG from a source column node to a potential target

label. The derived reasoning paths can naturally be regarded as

explanations for the predicted labels. We empirically show that the

proposed EXACTA approach can produce higher-quality column

annotations compared with state-of-the-art deep learning-based

methods. We also comprehensively evaluate the explainability of

our model, which obtains promising results in terms of the per-

ceived explainability, robustness, and faithfulness.

REFERENCES
[1] [n.d.]. General Data Protection Regulation - Wikipedia. https://en.wikipedia.org/

wiki/General_Data_Protection_Regulation. (Accessed on 08/17/2020).

[2] [n.d.]. WWT. https://www.cse.iitb.ac.in/~sunita/wwt/. (Accessed on 08/17/2020).

[3] Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng Zhang. 2018. Learning heteroge-

neous knowledge base embeddings for explainable recommendation. Algorithms
11, 9 (2018), 137.

[4] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. In Advances in neural information processing systems. 2787–2795.
[5] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.

2008. Webtables: exploring the power of tables on the web. VLDB (2008).

[6] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. 2019.

Colnet: Embedding the semantics of web tables for column type prediction. In

AAAI, Vol. 33. 29–36.
[7] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. 2019.

Learning semantic annotations for tabular data. In IJCAI.
[8] Jay DeYoung, Sarthak Jain, Nazneen Rajani, E. Lehman, Caiming Xiong, R. Socher,

and Byron C. Wallace. 2020. ERASER: A Benchmark to Evaluate Rationalized

NLP Models. ArXiv abs/1911.03429 (2020).

[9] Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro, and Vassilis

Christophides. 2017. Matching web tables with knowledge base entities: from

entity lookups to entity embeddings. In ISWC. Springer, 260–277.
[10] Open Knowledge Foundation. 2019. messytables: Tools for parsing messy tabular

data. https://github.com/okfn/messytables.

[11] Zuohui Fu, Yikun Xian, Yongfeng Zhang, and Yi Zhang. 2020. Tutorial on Con-

versational Recommendation Systems. In RecSys.

[12] Zuohui Fu, Yikun Xian, Yongfeng Zhang, and Yi Zhang. 2021. WSDM 2021

Tutorial on Conversational Recommendation Systems. InWSDM.

[13] Zuohui Fu, Yikun Xian, Yaxin Zhu, Yongfeng Zhang, and Gerard de Melo. 2020.

COOKIE: ADataset for Conversational Recommendation over Knowledge Graphs

in E-commerce. arXiv preprint arXiv:2008.09237 (2020).

[14] Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi Li.

2018. Openke: An open toolkit for knowledge embedding. In EMNLP. 139–144.
[15] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satya-

narayan, Tim Kraska, Çagatay Demiralp, and César Hidalgo. 2019. Sherlock: A

Deep Learning Approach to Semantic Data Type Detection. In KDD.
[16] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. 2017.

Imitation learning: A survey of learning methods. CSUR (2017).

[17] Edwin T Jaynes. 1957. Information theory and statistical mechanics. Physical
review 106, 4 (1957), 620.

[18] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul.

1999. An introduction to variational methods for graphical models. Machine
learning 37, 2 (1999), 183–233.

[19] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114 (2013).
[20] Freddy Lecue. 2020. On the role of knowledge graphs in explainable AI. Semantic

Web 11, 1 (2020), 41–51.
[21] Zhenyu Liao, Yikun Xian, Jiangfeng Li, Chenxi Zhang, and Shengjie Zhao. 2020.

Time-sync comments denoising via graph convolutional and contextual encoding.

Pattern Recognition Letters 135 (2020), 256–263.
[22] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating and

searching web tables using entities, types and relationships. VLDB (2010).

[23] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2018. Multi-hop knowledge

graph reasoning with reward shaping. EMNLP (2018).

[24] Microsoft. 2019. Power BI | Interactive Data Visualization BI Tools. https:

//powerbi.microsoft.com.

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

NIPS.
[26] Andrew Y Ng, Stuart J Russell, et al. 2000. Algorithms for inverse reinforcement

learning.. In ICML, Vol. 1. 2.
[27] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:

Global vectors for word representation. In EMNLP.
[28] Minh Pham, Suresh Alse, Craig A Knoblock, and Pedro Szekely. 2016. Semantic

labeling: a domain-independent approach. In ISWC. Springer, 446–462.
[29] Gianluca Quercini and Chantal Reynaud. 2013. Entity discovery and annotation

in tables. In EDBT. ACM, 693–704.

[30] S Krishnamurthy Ramnandan, Amol Mittal, Craig A Knoblock, and Pedro Szekely.

2015. Assigning semantic labels to data sources. In ESWC. Springer, 403–417.
[31] Saed Rezayi, Handong Zhao, Sungchul Kim, Ryan A. Rossi, Nedim Lipka, and

Sheng Li. 2021. Edge: Enriching Knowledge Graph Embeddings with External

Text. In NAACL.
[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should i

trust you?" Explaining the predictions of any classifier. In KDD.
[33] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-

precision model-agnostic explanations. In AAAI.
[34] Reuven Y Rubinstein and Dirk P Kroese. 2016. Simulation and the Monte Carlo

method. Vol. 10. John Wiley & Sons.

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv:1707.06347 (2017).

[36] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-

edge graph embedding by relational rotation in complex space. ICLR (2019).

[37] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[38] Yikun Xian, Zuohui Fu, Qiaoying Huang, Shan Muthukrishnan, and Yongfeng

Zhang. 2020. Neural-Symbolic Reasoning over Knowledge Graph for Multi-Stage

Explainable Recommendation. arXiv preprint arXiv:2007.13207 (2020).

[39] Yikun Xian, Zuohui Fu, S Muthukrishnan, Gerard de Melo, and Yongfeng Zhang.

2019. Reinforcement Knowledge Graph Reasoning for Explainable Recommenda-

tion. SIGIR (2019).

[40] Yikun Xian, Zuohui Fu, Handong Zhao, Yingqiang Ge, Xu Chen, Qiaoying Huang,

Shijie Geng, Zhou Qin, Gerard de Melo, S. Muthukrishnan, and Yongfeng Zhang.

2020. CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Recom-

mendation. In CIKM. ACM, 1645–1654.

[41] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. Deeppath: A

reinforcement learning method for knowledge graph reasoning. EMNLP (2017).

[42] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çağatay Demiralp,

and Wang-Chiew Tan. 2019. Sato: Contextual Semantic Type Detection in Tables.

arXiv preprint arXiv:1911.06311 (2019).
[43] Yaxin Zhu, Yikun Xian, Zuohui Fu, Gerard de Melo, and Yongfeng Zhang. 2021.

Faithfully Explainable Recommendation via Neural Logic Reasoning. NAACL.
[44] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. 2008.

Maximum entropy inverse reinforcement learning.. In Aaai, Vol. 8. 1433–1438.

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3783

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://www.cse.iitb.ac.in/~sunita/wwt/
https://github.com/okfn/messytables
https://powerbi.microsoft.com
https://powerbi.microsoft.com

APPENDIX
A IMPLEMENTATION DETAILS
In this section, we describe the implementations of our method,

including knowledge graph construction and model training details.

A.1 Knowledge Graph Construction
Since we adopt KG reasoning paths as explanations for the column

annotation predictions, it is required that each node in the graph

must be understandable to a human. Therefore, for KG construction,

we extract the following four groups of useful and comprehensible

features from columns and labels.

Cell-level statistics Inspired by a previous study [15], we ex-

tract 27 global statistical features from each column, including the

number of non-empty cell values, the entropy of cell values, fraction

of {unique values, numerical characters, alphabetical characters},

{mean, std. dev.} of the number of {numerical characters, alpha-

betical characters, special characters, words}, {percentage, count,

any, all} of the missing values, and {sum, min, max, median, mode,

kurtosis, skewness, any, all} of the length of cell values. The values

of these features are real-valued numbers, and hence for each fea-

ture, we uniformly bucketize its values into Nstat bins such that the

number of values in each bin is approximately equal. If a feature

f with value fi (i ∈ [Nstat]) is extracted from a column x ∈ X, we

accordingly add a triple (x, rf , fi) to the KG, where rf ∈ R is the

relation indicating that column x (head entity) has the property of

possessing feature f with value fi (tail entity). For instance, sup-
pose f represents the “average number of numerical characters”

with value fi = [1.0, 3.5]. The triple (x, rf , fi) stands for the fact
that the average number of numerical characters in column x lies

in the range [1.0, 3.5].

Character-level statistics We also extract statistical features

for a set of ASCII-printable characters including digits, letters, and

several special characters from each column. Given a character c ,
we extract 10 features: {any, all, mean, variance, min, max, median,

sum, kurtosis, skewness} of the number of occurrences of c in the

cells. Again, we bin the values of each feature into N
char

buckets. If

a feature fc of character c with value fc ,i is extracted from column

x , we add the corresponding triple (x, rfc , fc ,i) to the KG, where rfc
represents the column x has the property of feature fc with value

fc ,i . For instance, if fc represents the “average number of character

@” (c =“@”) with value fc ,i = [0.5, 2.2], the triple (x, rfc , fc ,i)

asserts that the average number of occurrences of “@” in the column

values for x is within the range of [0.5, 2.2].

Cell keywords The above two kinds of features cover statistical

information at different levels of granularity. We further consider

word-level features by tokenizing all cell values in a column. After

aggregating all unique values, we choose the top |V
cell

| frequent

values as the keyword vocabulary V
cell

. The reason not to directly

utilize a word embedding such as word2vec [25] for feature extrac-

tion is that individual dimensions of the word embedding are not

comprehensible. If a column x contains a keywordw ∈ V
cell

, we add

a triple (x, r
has_keyword

,w) to the KG, meaning that the column en-

tity x connects to a keyword entityw via relation r
has_keyword

∈ R.

Header/Label features In some cases, a header can directly

reflect the meaning of the column, which can be used to establish a

correspondence to a candidate label. Similar to cell keywords, we

also tokenize headers and labels to enlargen the keyword set V
cell

.

Supposing a label y or the header of column x contains a keyword

w , we denote this fact as (y, r
described_by

,w) or (x, r
described_by

,w).

In addition, if a column x is known to be matched to a label y, we
directly add a triple (x, r

match
,y) to the KG.

A.2 Training Pipeline
The complete training pipeline of EXACTA is summarized in Alg. 1.

A.3 Neural Network Architectures and
Hyperparameters

For the TransE[4] embeddings that are used for initializing the

state and action representations, we set both the entity and relation

embedding dimensionality to 100. The model is implemented in

OpenKE [14], and trained using Adam optimization with a learning

rate of 0.0008, batch size of 100, and the number of training epochs

set to 100.

For our KG reasoning model, the architectures of the four neural

networks are defined below.

• The policy network is defined as

πθ (at |st) = N (at |µθ (st), diag(Σθ (st))),

µθ (st) =W2ReLU(W1(st)), Σθ (st) =W3ReLU(W1(st)),

whereW1 ∈ R200×256 andW2,W3 ∈ R256×200.
• The reward function is defined as

Rϕ (st ,at) =W5ReLU(W4[st ; at]),

whereW4 ∈ R400×256 andW5 ∈ R256×1.
• The state-dependent covariance matrix in the worker policy is:

Σω (st) =W7ReLU(W6st),

whereW6 ∈ R200×256 andW7 ∈ R256×200.

Algorithm 1 Training Pipeline

1: Input: KG G, noisy paths {L }.
2: Output: reward function Rϕ , policy network πθ
3: Convert paths {L } to trajectories

˜D with pretrained TransE.

4: Initialize policy network πθ (at |st), reward function Rϕ (st , at).
5: Initialize FFω and variational distribution qψ (at |st , ãt).
6: for epoch n = 1 . . . , N do
7: Update qψ with gradient

∑
τ̃ ∈ ˜D

∇ψ L
path

(ϕ, ω ,ψ ; τ̃).
8: for i = 1, . . . ,m do ▷ Samplem augmented trajectories

9: Initialize ξi = {s1 = [x; x]}, for random x ∈ X.

10: for t = 1, . . . ,T do
11: Sample at ∼ πθ (at |st), ϵt ∼ N (0, I), ãt = at + σϵt
12: Sample st+1 ∼ p(st+1 |st , ãt) and add (at , ãt , st+1) to ξi .
13: Compute L

rl
(ω , ϕ, θ) with {ξi }i∈[m].

14: Update πθ via PPO with Rϕ . ▷ Solve RL problem

15: Update pω with gradient ∇ωL(ω , ϕ ; ˜D).

16: Update Rϕ with gradient ∇ϕL(ω , ϕ ; ˜D). ▷ Learn rewards

17: return Rϕ , πθ

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3784

1.0 0.9 0.8 0.7 0.6 0.5
Ratio of input paths

0.475

0.500

0.525

A
nn

ot
at

io
n

F
1 Ours

RotatE

1.0 0.9 0.8 0.7 0.6 0.5
Ratio of input paths

0.600

0.625

0.650

A
nn

ot
at

io
n

F
1 Ours

SATO

(a) WWT (b) WebTable78

Figure 7: Column annotation performance (F1) of our
method trained with various portions of input paths com-
pared to the best baseline on two open datasets.

2 3 4 5
Max Path Lengths

0.45

0.50

A
nn

ot
at

io
n

F
1 Ours

RotatE

2 3 4 5
Max Path Lengths

0.600

0.625

0.650

A
nn

ot
at

io
n

F
1 Ours

SATO

(a) WWT (b) WebTable78

Figure 8: Column annotation performance (F1) of our
method with various output path lengths compared to the
best baseline on two open datasets.

• The variational distribution is defined as

qψ (at |st , ãt) = N (at |µψ (st), diag(Σψ (st))),

µψ (st) =W9ReLU(W8([st); ãt]),

Σψ (st) =W10ReLU(W8([st ; ãt])),

whereW8 ∈ R400×256 andW9,W10 ∈ R256×200.

For ϕ, ω, and ψ , we rely on Adam optimization with a learning

rate 10
−4

and batch size 256. We adopt PPO [35] to train the policy

network with parameter θ . The model is trained for 100,000 steps on

the WWT, Retailer, and Marketing datasets, and for 200,000

steps on the WebTable78 dataset.

In the KG construction, we set the bin sizesNstat = 20,N
char
= 20

and vocabulary size |V
cell

| = 15, 000.

B MORE EXPERIMENTAL RESULTS
B.1 Ablation Study
We also conduct the ablation study on the two open-source datasets

WWT and WebTable78.
For the influence of the quantity of input paths, the results on

the two datasets are illustrated in Fig. 7. For the influence of the

maximum number of steps, the results are plotted in Fig. 8. We can

see that both results are consistent with those on the two industrial

datasets.

B.2 Qualitative Analysis on Learned Reward
In order to better investigate why our model is able to reach ex-

plainable feature nodes during path reasoning, we visualize the

learned rewards to see if important feature nodes in the KG are

assigned higher rewards by our model. As illustrated in Fig. 9, we

showcase one example from the test set, where rewards marked in

brackets are associated with each edge (action in MDP). We can see

that there are in total four paths connecting the starting “Column

A” and two potential labels, and the predicted path is highlighted

using bold edges, along which the agent is able to collect the high-

est rewards. Intuitively, the predicted path leads to a correct label

and its explainability is better than that of the other 3 paths. This

intuition is consistent with the observed reward values, suggesting

that our model is able to learn good rewards for KG reasoning.

Column A

…

326 West Street

…

“street”

Column B

…

17 Main Street West

…

<Label>
HomeAddress

“west”
Column C

…

david.west@yahoo.com

…
[0, 5]

<Label>
PersonalEmail

has_keyword Avg. #numeric chars match

(2.43)

(2.04)

(1.98)

(2.51)

(2.44)

(2.35)

(2.21)

(2.52)

(2.29)

(x.xx) reward

Figure 9: Visualization of learned rewards on a subgraph of
the Retailer dataset. The explainable path with the high-
est cumulative rewards is highlighted in bold.

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3785

	Abstract
	1 Introduction
	2 Preliminaries
	3 Our Method
	3.1 Formulation as IRL Problem
	3.2 Training Framework
	3.3 Inference

	4 Experiments
	4.1 Experimental Setup
	4.2 Experiment on Column Annotation
	4.3 Experiment on Explainability
	4.4 Ablation Study
	4.5 Online Simulation

	5 Related Work
	6 Conclusion
	References
	A Implementation Details
	A.1 Knowledge Graph Construction
	A.2 Training Pipeline
	A.3 Neural Network Architectures and Hyperparameters

	B More Experimental Results
	B.1 Ablation Study
	B.2 Qualitative Analysis on Learned Reward

