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ABSTRACT
There has been growing attention on fairness considerations re-

cently, especially in the context of intelligent decision making sys-

tems. Explainable recommendation systems, in particular, may suf-

fer from both explanation bias and performance disparity. In this

paper, we analyze different groups of users according to their level

of activity, and find that bias exists in recommendation performance

between different groups. We show that inactive users may be more

susceptible to receiving unsatisfactory recommendations, due to

insufficient training data for the inactive users, and that their rec-

ommendations may be biased by the training records of more active

users, due to the nature of collaborative filtering, which leads to an

unfair treatment by the system. We propose a fairness constrained

approach via heuristic re-ranking to mitigate this unfairness prob-

lem in the context of explainable recommendation over knowledge

graphs. We experiment on several real-world datasets with state-

of-the-art knowledge graph-based explainable recommendation

algorithms. The promising results show that our algorithm is not

only able to provide high-quality explainable recommendations,

but also reduces the recommendation unfairness in several respects.
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1 INTRODUCTION
Compared with traditional recommendation systems (RS), explain-

able recommendation is capable of not only providing high-quality

recommendation results but also offering personalized and intu-

itive explanations [45], which are important for e-commerce and

social media platforms. However, current explainable recommen-

dation models leave two major concerns in terms of fairness. First,

the model discriminates unfairly among the users in terms of rec-

ommendation performance. And second, the model may further

discriminate between users in terms of explanation diversity. In

this paper, we consider the fairness issues of both performance im-

balance and explanation diversity in explainable recommendation,

which arises from the fact that there may be groups of users who

are less noticeable on a platform, e.g., due to inactivity, making

them less visible to the learning algorithms.

One reason for this relates to the issue of data imbalance. Some

users are disinclined to make a large number of purchases, which

leads to insufficient historical user–item interactions. For instance,

on e-commerce platforms such as Amazon, eBay, or Taobao, eco-

nomically disadvantaged groups often make fewer purchases in

light of their limited income and credit opportunities [20]. Under

such circumstances, when making recommendation decisions, ex-

plainable RS models will be subject to algorithmic bias. The lack

of user–item interactions implies that the corresponding user pref-

erences are barely captured, causing weak visibility of such users

to the RS model. This leads to the risk of such users being treated

unfairly in terms of both recommendation performance and expla-

nation diversity. In this paper, we aim at alleviating such algorithmic

bias and improving the fairness of explainable recommendations.

Unfortunately, it is challenging to study fairness in recommen-

dation systems due to the lack of unifying definitions and means

of quantifying unfairness. Farnadi et al. [17] claim that no model

can be fair in every aspect of metrics. Previous work has explored

the fairness problem in recommendation from the perspective of

selection aspects [21, 33, 35], marketing bias [36], popularity bias

[42], multiple stakeholders [5] in terms of consumers and providers,

among others. Existing research on fairness has shown that pro-
tected groups1, defined as the population of vulnerable individuals

in terms of sensitive features such as gender, age, race, religion, etc.,

are easily treated in a discriminatory way. However, it is generally

not easy to obtain access to such sensitive attributes, as users often

prefer not to disclose such personal information. In this study, we

1
Chen et al. [9] summarizes the protected classes defined by the US Fair Housing Act

(FHA) and Equal Credit Opportunity Act (ECOA).
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instead consider a directly observable property, the visibility of the

user to the explainable RS model, which relates to a user’s level of

activity on the platform, and may directly entail subpar treatment

by the recommendation engine.

We are interested in solving the fairness problem on the user side

specifically for knowledge graph (KG) enhanced explainable rec-

ommender systems. Since KGs preserve structured and relational

knowledge, they make it easy to trace the reason for specific recom-

mendations. KG-based approaches have thus grown substantially

in popularity in explainable recommendation. Their explicit expla-

nations take the form of reasoning paths, consisting of a sequence

of relationships that start from a user and ultimately lead to a rec-

ommended item. State-of-the-art KG-based explainable RS methods

[1, 37, 38, 40, 41, 44] utilize rich entity and relation information

within the KG to augment the modeling of user–item interactions
2
,

so as to better understand the user preferences to make satisfactory

recommendation decisions, accompanied by explainable reasoning

paths. However, due to the fundamental nature of collaborative

filtering, current KG-based explainable recommendation methods

heavily rely on users’ collective historical interactions for model

learning, so the recommendations and corresponding explanations

tend to be more consistent with the dominating historical user in-

teractions. Because of this, current RS methods tend to neglect the

user–item interactions of less visible, inactive users, since they are

easily overwhelmed by more visible, active users.

Thus, we argue that it is critical for a RS to pay attention to

inactive users as well, so that they can be served with high-quality

recommendations and more diverse explanations. The connecting

paths between users and recommended items are expected to be

highly relevant and match past user interactions. Thus, a learning

algorithm drawing on user–item path links is likely to yield bet-

ter recommendation performance for users who have contributed

more interactions. However, the remaining portion of users that

are less visible to the model may end up not enjoying the same

recommendation experience. In part, this can stem from a lack of a

relevant user–item interaction history to accurately reveal the user

preferences. However, even if a user is not entirely inactive, the

model’s training on input data dominated by the more visible users

can easily lead to it being biased towards the interactions made by

the most active and privileged users.

In this work, we capture user–item interactions at both the indi-

vidual and group level in terms of user–item paths. We particularly

seek to understand 1) how to verify our concerns about the unfair-

ness problems in explainable recommender systems and quantify

such unfairness; 2) how to alleviate any potential algorithmic bias

so as to improve the recommendation quality, while providing di-

verse explanations, especially for disadvantaged users, 3) whether

our fairness-aware method is able to consider both group-level

fairness and individual-level fairness, and whether it possesses

generalizability to multiple KG-enhanced explainable RS methods.

Based on these, our main contributions include:

• We study four e-commerce datasets from Amazon and conduct a

data-driven observation analysis to assess their data imbalance

characteristics. We identify unfairness owing to the difference

2
We interchangeably use “user interactions" and “user–item interactions" in the paper.

in historical user–item interactions, and argue that current KG-

based explainable RS algorithms neglect the discrepancy of user

preferences, which gives rise to unfair recommendations. Ad-

ditionally, we devise the group fairness and individual fairness
criteria with regard to recommendation performance and expla-

nation diversity.

• Since there are intrinsic differences in user preferences among

the users due to data imbalance, our goal is not to pursue an

absolute parity of recommendations and explanation diversity.

Rather, we propose a fairness-aware algorithm so as to provide

fair explainable diversity leading to potential items of interest for

recommendations. Specifically, we formalize this as a 0–1 inte-

ger programming problem and invoke modern heuristic solving

techniques to obtain feasible solutions.

• Our algorithm is expected to improve the recommendation qual-

ity while narrowing the disparity between different groups of

users. Through extensive experiments and case studies, the quan-

titative results suggest that our fairness-aware algorithm provides

significant improvements in both recommendation and fairness

evaluation, at both the group level and individual level.

2 RELATEDWORK
Fairness in Decision Making. Growing interest in fairness has

arisen in several research domains. Most notably, for data-driven

decision-making algorithms, there are concerns about biases in

data and models affecting minority groups and individuals [13].

Group fairness, also known as demographic parity, requires that

the protected groups be treated equally to advantaged groups or

the general population [23, 31, 35]. In contrast, individual fairness

requires that similar individuals with similar attributes be treated

similarly [4, 14, 27, 28]. Several prior works have sought to quantify

unfairness both at the group and individual level [26]. Model bias

has in fact been shown to amplify biases in the original data [2,

18, 47]. For each specific domain, there is a need to design suitable

metrics to quantify fairness and develop new debiasing methods to

mitigate inequity for both groups and individuals.

Fairness-aware Ranking and Recommendation. In the field

of recommendation systems, the concept of fairness has been ex-

tended to multiple stakeholders [5]. Lin et al. [29] defined fairness

measures in recommendation and proposed a Pareto optimization

framework for fair recommendation. Mehrotra et al. [30] addresses

the supplier fairness in two-sided marketplace platforms and pro-

posed heuristic strategies to jointly optimize fairness and relevance.

Different aspects of fairness have been explored. Beutel et al. [3]

investigated pairwise recommendation with fairness constraints.

Celis et al. [6] addressed the polarization in personalized recom-

mendations, formalized as a multi-armed bandit problem. As for the

fairness ranking, Zehlike et al. [43] proposed a fair top-𝑘 ranking

task that ensures that the proportion of protected groups in the

top-𝑘 list remains above a given threshold. Singh and Joachims [35]

presented a conceptual and computational framework for fairness

ranking that maximizes the utility for the user while satisfying

specific fairness constraints. Geyik et al. [21] developed a fairness-

aware ranking framework that improves the fairness for individuals

without affecting business metrics. Wu et al. [39] draw on causal

graphs to detect and remove both direct and indirect rank bias, and
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show that a casual graph approach outperforms statistical parity-

based approaches in terms of the identification and mitigation of

rank discrimination. In our work, we are particular interested in

the disparity of user visibility to modern ranking algorithms in

recommendation systems.

ExplainableRecommendationwithKnowledgeGraphs. Ex-

plainable recommendation [45] has been an important direction

in recommender system research. Past work has considered ex-

plaining latent factor models [46], explainable deep models [19],

social explainable recommendations [32], visual explanations [10],

sequential explanations [11], and dynamic explanations [12]. An

important line of research leverages entities, relationships, and

paths in knowledge graphs to make explainable decisions. Within

this field, Ai et al. [1] incorporated TransE-based knowledge graph

representations for explainable recommendation. Wang et al. [38]

proposed an attention-based knowledge-aware model to infer user

preferences over KGs for recommendation. Xian et al. [41] adopted

reinforcement learning for path inference in knowledge graphs.

Chen et al. [7] improved the efficiency of KG-based recommenda-

tion based on non-sampling learning. However, none of these works

considered model bias, which may lead to both recommendations

and explanations that fail to satisfy basic principles of fairness.

3 PRELIMINARIES
In this section, we introduce the relevant concepts regarding ex-

plainable recommendation over knowledge graphs.

A knowledge graph is defined as a set of triples with G =

{(𝑒
h
, 𝑟 , 𝑒t) | 𝑒h, 𝑒t ∈ E, 𝑟 ∈ R}, where E is a set of entities and R is

a set of relations connecting two different entities. A relationship

between a head entity 𝑒
h
and tail entity 𝑒t through relation 𝑟 in

the graph can be represented as the triple (𝑒
h
, 𝑟 , 𝑒t). In standard

recommendation scenarios, the subsetU stands for theUser entities,
whileV represents item entities (U ∩V = ∅). Each relation 𝑟 ∈ R
uniquely determines the candidate sets for its head and tail entities.

For example, a “purchase” in e-commerce recommendation, denoted

by 𝑟up, always has (𝑒, 𝑟up, 𝑒 ′) ∈ G ⇒ 𝑒 ∈ U, 𝑒 ′ ∈ V .

A pattern 𝜋 of length |𝜋 | in G is defined as the sequential com-

posite of |𝜋 | relations, 𝜋 = {𝑟1 ◦ 𝑟2 ◦ · · · ◦ 𝑟 |𝜋 | | 𝑟𝑖 ∈ R, 𝑖 ∈ [|𝜋 |]},
where "◦" denotes the composition operator on relations. A path
with respect to a pattern 𝜋 , denoted by 𝐿𝜋 , is a sequence of enti-

ties and relations, defined as 𝐿𝜋 = {𝑒0, 𝑟1, 𝑒1, . . . , 𝑒 |𝜋 |−1, 𝑟 |𝜋 |, 𝑒 |𝜋 | |
(𝑒𝑖−1, 𝑟𝑖 , 𝑒𝑖 ) ∈ G, 𝑖 ∈ [1, |𝜋 |]}. In the context of KG-based recom-

mendation, we specifically consider user–item paths of path pat-

tern 𝜋 , denoted by 𝐿𝜋𝑢𝑣 as a connecting path from user 𝑢 to item 𝑣 ,

which satisfies that 𝑒0 = 𝑢 and 𝑒 |𝜋 | = 𝑣 .
We also define the user–item path distribution over user 𝑢

and item set V , denoted by D𝑢,V , to be D𝑢,V (𝜋) = 𝑁 (𝜋 )∑
𝜋′∈Π 𝑁 (𝜋 ′) ,

where 𝑁 (𝜋) denotes the occurrence frequency of user–item paths

with respect to pattern 𝜋 , i.e., |{𝐿𝜋𝑢𝑣 | 𝑣 ∈ V}|. The original problem
of explainable recommendation over KGs is formally defined as:

Definition 1. (Explainable Recommendation overKGs) Given
an incomplete knowledge graph G, the goal is to recover missing facts
{(𝑢, 𝑟𝑢𝑣, 𝑣) | (𝑢, 𝑟𝑢𝑣, 𝑣) ∉ G, 𝑢 ∈ U, 𝑣 ∈ V} such that each fact
(𝑢, 𝑟𝑢𝑣, 𝑣) is associated with a user–item path 𝐿𝜋𝑢𝑣 , where item 𝑣 is

Bracelet
purchasepurchase-1purchase

Key chain

produced_by

Twinkling hairpin“Blink”
mention featured_by

produced_by-1
SweaterHello KittyHand bag

purchase
Luna

1

2

3...

Linda

Figure 1: Path pattern example of user "Luna" where −1
means the reversed direction.

the recommendation for user 𝑢 and the path 𝐿𝜋𝑢𝑣 is the explanation
for the recommendation.

4 MOTIVATING FAIRNESS CONCERNS
4.1 Data Imbalance
The traditional unfairness problem arises based on sensitive in-

trinsic attributes that distinguish different demographic groups

[8, 16]. In this paper, we consider the visibility of users with regard

to their activities in terms of user interactions. E.g, economically

disadvantaged customers tend to make fewer purchases, leading

to imbalanced data. Current explainable models remain oblivious

of such disparities in user–item interaction data. Such imbalances,

however, may lead to biased models that exhibit unfairness with

respect to the recommendation quality and explanation diversity.

To assess the distribution empirically, we consider Amazon

datasets for 4 item categories: CDs and Vinyl, Clothing, Cell Phones,
and Beauty. Further details of this data are given in Sec. 7.

Table 1 shows the distribution of the number of items purchased

in the four datasets. We observe that although the most active users

tend to purchase more items, the majority of consumers are inactive

users who are easily disregarded by commercial recommendation

engines. Therefore, it is indispensable to devise techniques to better

serve such users, and it can indeed also make sense economically

to serve higher-quality recommendations to them with the hope of

enticing them to make further purchases.

4.2 Path Distributions as a Cause of Unfairness
Imbalanced data can easily lead to biased models. For explainable

recommendation over KGs, the models generally consider paths

along nodes in the KG as pertinent signals for recommendation [25].

User–item paths in the KG can directly serve as explanations that

provide the reason why an item is recommended [41]. For instance,

in Fig. 1, in the first path pattern, Luna may wish to purchase the

same bracelet as another user, since both have purchased the same

key chain. Luna might also appreciate the twinkling hairpin, since

its shiny feature overlaps with her review comment. Finally, Luna

may consider purchasing a sweater because it matches the brand

of a previous purchase, as in the 3rd path.

Instead of considering particular paths along specific nodes, we

can also consider just the relations involved in the paths to observe

which general relational structures are serving as explanations

across different paths with similar semantics. The three specific

paths in Fig. 1 can be viewed as instances of three different path

patterns as defined in Section 3. Thus, the distribution of user–item

paths with regard to different path patterns can shed light on the

diversity of explanations.
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Figure 2: Statistics of Amazon Beauty dataset. The same
trends are observed for the other three datasets.

We claim that the divergence of user–item path distributions

between two groups is an essential factor leading to unfair rec-

ommendation performance and a disparity in the diversity of ex-

planations. To investigate this, we compute a series of statistics

pertaining to the path distributions and recommendation quality

on the aforementioned Amazon data as follows:

(1) Fig. 2 (a) plots the path distribution over the top-15 most fre-

quent path patterns. We consider the top 5% of users with the

largest number of purchases for each category in the training

set as the active group, while the remaining users are consid-

ered inactive users. We observe divergent distributions between

active and inactive users according to this group division. Al-

though the inactive group constitutes the majority of users,

their user–item path patterns lack diversity. We shall see that

this can lead to unfair recommendation performance.

(2) Table 2, described later in further detail, provides experimen-

tal results for a number of recommendation algorithms, with

separate columns for active vs. inactive users. We observe that

the inactive group obtains far lower scores compared to the

active group, which consists of only 5% of users. Thus, the

performance for the vast majority of users is sacrificed.

However, current KG-based recommendation approaches [1, 38, 41]

neglect the distribution of paths connecting users and items. Their

heuristic sampling strategy fits the overall path distribution, which

is highly skewed.

4.3 Quantifying Diversity
To better assess the difference in path distribution between two

groups, we introduce Simpson’s Index of Diversity (𝑆𝐼𝐷) [34] as a

metric that quantifies the unfairness. 𝑆𝐼𝐷 is often used to quan-

tify the biodiversity of a habitat in ecological science, taking into

account the number of types (e.g., species) present, as well as the

abundance of each type. Specifically, the twomain factors taken into

account to measure diversity are richness and evenness. Richness is
the number of different species present and evenness compares the

similarity of the population size of each of the species present. A

habitat or community dominated by one or two species is consid-

ered to be less diverse than one in which several different species

are similarly abundant. Note that the alternative Shannon index is

more sensitive to the size of species. Conversely, Simpson’s index

emphasizes the dominant species more compared to the Shannon

Dataset CDs & Vinyl Clothing Cell Phones Beauty
𝑛 < 4 0 0 0 0

4 ≤ 𝑛 < 5 18.1K 15.3K 12.0K 7.1K

5 ≤ 𝑛 < 6 20.0K 13.6K 0.9K 6.9K

6 ≤ 𝑛 < 9 16.4K 7.3K 4.7K 4.7K

9 ≤ 𝑛 < 15 11.2K 2.3K 1.1K 2.5K

15 ≤ 𝑛 < 30 3.5K 445 267 886

𝑛 ≥ 30 2.1K 36 55 233

Table 1: Number of users located at different purchase
thresholds(as 𝑛 represents) in the training split of four Ama-
zon e-commerce datasets.

index (also called Shannon entropy). In other words, Shannon en-

tropy is a proper manifestation mainly for species richness, while
𝑆𝐼𝐷 takes into account both richness and evenness measuring both

absolute diversity of species and relative abundance of species.

We conduct the corresponding analysis of our Amazon data

assuming each user represents a unique community, while the pat-

terns of corresponding user–item paths denote the species within

such a community. Formally, the 𝑆𝐼𝐷 measures the probability that

two randomly selected individual user–item paths belong to the

same user–item path pattern. The probability of obtaining the same

pattern in two random draws is defined as
3
:

T𝑢𝑣 (𝑅, 𝑁 ) = 1 −
∑𝑅
𝑖=1 𝑛𝑖 (𝑛𝑖 − 1)
𝑁 (𝑁 − 1) , (1)

where 𝑅 represents the number of path patterns for the specified

user 𝑢 to the item 𝑣 , 𝑛𝑖 denotes the number of such paths belonging

to the 𝑖-th path pattern, and 𝑁 is the total number of user–item

paths originating from the user. The 𝑆𝐼𝐷 value T𝑢𝑣 (𝑅, 𝑁 ) ranges
between 0 and 1, with larger values indicating a greater path pattern

diversity. In our setup, we compute T𝑢𝑣 (𝑅, 𝑁 ) for each user based

on sampling without replacement. The 𝑆𝐼𝐷 distribution plotted in

Fig. 2 (b) shows that the inactive group of users have less diversity

in their path patterns compared to the active users. We shall later

invoke Simpson’s Index of Diversity in our fairness algorithm.

5 FAIRNESS OBJECTIVES
In this section, we formally define the problem of fairness-aware

explainable recommendation, considering both group and individ-

ual level fairness. The group unfairness measurement over the

entire population can be viewed as a between-group unfairness

component. We approximate such parity across a divided set of

subgroups of the population, e.g., in accordance with user visibility.

The individual unfairness component is computed as an average

sum of inequality in benefits received by individuals overall. We

also formalize similar metrics in terms of individual-level fairness.

5.1 Group Unfairness Metrics
Group fairness holds when users from two groups maintain the

same probability of a positive decision [15]. In our setting, we

consider a group of active users 𝐺1 vs. a group of inactive users 𝐺2,

defined according to the number of purchased items from historical

records, such that 𝐺1 ∩𝐺2 = ∅.
3
If the size of dataset is very large, sampling without replacement provides approxi-

mately the same result, however, when the size of dataset is small, the difference can

be substantial.
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Suppose there are𝑚 users {𝑢1, 𝑢2, · · · , 𝑢𝑚} associated with top-

𝑁 recommended items {𝑣1, 𝑣2, · · · , 𝑣𝑁 | 𝑢𝑖 }. In the following part,

we take {1 ≤ 𝑖 ≤ 𝑚} and {1 ≤ 𝑗 ≤ 𝑁 } to index users and items. We

use Q = [𝑄𝑖 𝑗 ]𝑚×𝑁 , where 𝑄𝑖 𝑗 ∈ {0, 1} denotes whether item 𝑗 is

selected for recommendation to user𝑢𝑖 . LetQi = [𝑄𝑖1𝑄𝑖2 · · ·𝑄𝑖𝑁 ]T
represent the selection vector for the top-𝐾 recommendation list

of user 𝑢𝑖 under the constraints
∑𝑁

𝑗=1𝑄𝑖 𝑗 = 𝐾 , 𝐾 ≤ 𝑁 . We use the

notation F to refer to a metric that scores the recommendation

quality such that F (Qi) denotes the recommendation quality for

user 𝑢𝑖 , invoking a metric such as 𝑁𝐷𝐶𝐺@𝐾 or F1 score.

The group recommendation unfairness is defined as follows:

Definition 2. Group Recommendation Unfairness:

𝐺𝑅𝑈 (𝐺1,𝐺2,Q) =

������ 1

|𝐺1 |
∑
𝑖∈𝐺1

F (Qi) −
1

|𝐺2 |
∑
𝑖∈𝐺2

F (Qi)

������ (2)

As we have discussed in the previous section, it is the disparity

in the diversity of the path distribution which leads to the perfor-

mance disparity. In explainable recommendation over KGs, we also

define group-level unfairness of the explanation path diversity by

applying Simpson’s Index of Diversity (𝑆𝐼𝐷) to the user–item path

distribution. In this context, we define:

Definition 3. Group Explanation Diversity Unfairness:

𝐺𝐸𝐷𝑈 (𝐺1,𝐺2,Q) =

������ 1

|𝐺1 |
∑
𝑖∈𝐺1

𝑓 (Qi) −
1

|𝐺2 |
∑
𝑖∈𝐺2

𝑓 (Qi)

������ , (3)

where 𝑓 (Qi) reflects the explanation fairness score in terms of

the diversity of historical interactions of user 𝑢𝑖 with explainable

paths (defined later in Eq. 10). We adopt the averaging strategy to

represent the user–item explanation diversity of two groups.

5.2 Individual Unfairness Metrics
The concept of individual fairness was first introduced by Dwork

et al. [14] to address the inability of group fairness to reflect in-

dividual merits. The underlying notion is that similar individuals

ought to be treated similarly. In our recommendation setting, it is

not possible to meet the strict criteria of individual fairness, since

we focus on solving the algorithm bias, not the inherent data imbal-

ance. However, we can follow this idea to measure the individual

unfairness with regard to both recommendation performance and

explanation diversity.

For this, we invoke the Gini coefficient [22], which is commonly

used in sociology and other fields to measure the inequality disper-

sion. It ranges from 0 to 1, where 1 represents maximal inequality in

the sense that one single person has all the income or consumption,

and all others have none, while 0 means perfect equality, where

everyone has the same income value. In our setting, the Gini co-

efficient is adopted to quantify the individual recommendation

performance unfairness as follows:

Definition 4. Individual Recommendation Unfairness:

𝐼𝑅𝑈 (Q) =
∑
Qx,Qy

��F (Qx) − F (Qy)
��

2𝑚
∑𝑚
𝑖=1 F (Qi)

, (4)

where 𝑥 ≠ 𝑦 denotes two random users. Similarly, considering the

explanation diversity in terms of fairness, we also define a measure

of explanation diversity disparity among different individual users:

Definition 5. Individual Explanation Diversity Unfairness:

𝐼𝐸𝐷𝑈 (Q) =
∑
Qx,Qy

��𝑓 (Qx) − 𝑓 (Qy)
��

2𝑚
∑𝑚
𝑖=1 𝑓 (Qi)

(5)

5.3 Problem Formulation
We can now proceed to formalize the problem of explainable rec-

ommendation under fairness constraints. The original KG-based

explainable recommendation problem aims to recover missing user–

item interactions from an incomplete KG along with a set of paths

that serve as the corresponding explanations for the recommenda-

tions. Instead of imposing fairness constraints in the path-finding

process, which would require substantial computational effort to

retrain existing models, we seek a fairness-aware path reranking for

explainable recommendation. Given a candidate set of user–item

paths selected by an existing model, our goal is to rank the paths

to obtain high-quality recommendations while satisfying fairness

constraints. Formally, we define the problem as follows.

Definition 6. Group Fairness-aware Explainable Recom-
mendation Given a set of users from different groups 𝐺1,𝐺2, each
user 𝑢 having a set of user–item paths, and an integer 𝐾 , the goal is
to maximize the overall top 𝐾 recommendation quality by rank-
ing these paths for each user under the fairness constraints that
𝐺𝑅𝑈 (𝐺1,𝐺2, Q̂) ≤ 𝜀1 and 𝐺𝐸𝐷𝑈 (𝐺1,𝐺2, Q̂) ≤ 𝜀2, where Q̂ ∈
{0, 1}𝑚×𝑁 and Q̂𝑖 𝑗 = 1 implying the 𝑗-th candidate path is selected
among top 𝐾 outputs for the 𝑖-th user by the algorithm.

Similarly, we can define the task of individual fairness-aware

explainable recommendation by treating each user as belonging to

a group and using Eq. 4 and Eq. 5 in the fairness constraints. One

important application is to quantify the unfairness of an algorithm,

particularly assessing how different the outcomes are between

different groups when using current state-of-the-art algorithms.

Thus, we will attempt to minimize the unfairness while retaining

the recommendation quality to the extent possible.

6 FAIRNESS-AWARE ALGORITHM
In this paper, we propose a general fairness-aware ranking frame-

work, which can be applied on top of several state-of-the-art ex-

plainable recommendation algorithms based on knowledge graphs.

With an understanding of the fairness goals, the question that arises

is: How could an explainable recommendation model be able to

yield a fair recommendation list while maintaining explanation

diversity? The original explainable paths provided by the original

algorithms provide compelling arguments for why a given item is

recommended based on historical user interactions. It would not

make sense to completely ignore all of them. At the same time,

fairness constraints raise path diversity as an additional concern.

On the basis of this, our fairness-aware algorithm should consider

both historical user interactions and the diversity of generated

explainable paths.

We introduce two fairness scores: the path score Sp and the

diversity score S
d
.
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Dataset CDs & Vinyl Clothing

Measures (%)

Overall Inactive Users Active Users GRU Overall Inactive Users Active Users GRU

NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1

HeteroEmbed 6.992 3.576 6.526 3.373 15.843 7.429 9.317 4.056 3.221 1.404 3.121 1.348 5.130 2.461 2.009 1.113

Fair HeteroEmbed 8.094 4.019 7.674 3.820 16.074 7.801 8.400 3.981 3.494 1.536 3.484 1.482 3.691 2.556 0.207 1.074
PGPR 6.947 3.571 6.526 3.373 14.943 7.324 8.417 3.951 2.856 1.240 2.787 1.198 4.197 2.036 1.410 0.833

Fair PGPR 8.045 4.019 7.675 3.820 15.074 7.801 7.399 3.261 3.101 1.314 3.089 1.274 3.322 2.078 0.233 0.804
KGAT 5.411 3.357 5.038 3.162 12.498 7.046 7.460 3.884 3.021 1.305 2.931 1.254 4.741 2.259 1.810 1.005

Fair KGAT 5.640 3.492 5.295 3.318 12.366 6.791 7.081 3.473 3.206 1.393 3.119 1.347 4.843 2.262 1.724 0.915
Dataset Beauty Cell Phones

Measures (%)

Overall Inactive Users Active Users GRU Overall Inactive Users Active Users GRU

NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1

HeteroEmbed 6.371 3.125 6.078 2.756 11.933 10.132 5.855 7.376 5.833 2.537 5.645 2.311 9.395 6.829 3.750 4.518

Fair HeteroEmbed 6.740 3.181 6.451 2.924 12.229 9.853 5.778 6.929 6.199 2.678 6.037 2.466 9.284 6.648 3.247 4.182
PGPR 5.456 2.544 5.219 2.291 9.766 7.349 4.547 5.148 5.079 2.116 4.945 1.972 7.626 4.846 2.681 2.874

Fair PGPR 5.717 2.680 5.504 2.430 9.766 7.431 4.262 5.001 5.380 2.193 5.252 2.076 7.807 4.409 2.555 2.333
KGAT 6.108 3.169 5.863 2.761 10.763 10.929 4.900 8.168 5.111 2.265 4.958 2.100 8.026 5.391 3.068 3.297

Fair KGAT 6.241 3.228 6.001 2.832 10.785 10.752 4.784 7.920 5.304 2.391 5.159 2.240 8.057 5.256 2.898 3.016
Table 2: Overall recommendation performance of inactive users and active users of our proposed fairness-aware algorithm
on explainable recommendation approaches and corresponding baselines on four Amazon datasets. The results are reported
in percentage (%) and are calculated based on the top-10 predictions in the test set. The best results are highlighted in bold.
HeteroEmbed is proposed in [1] and PGPR, KGAT come from [41] and [38], repectively.

Path Score. The path score weights the quality of paths. Accord-

ing to the motivation of fairness concerns in Sec. 4, we wish to

consider a more varied set of paths rather than just the kinds that

dominate the historic user–item interaction data. Therefore, our

path score incorporates an explicit debiasing weighting to adjust

the bias of user–item path patterns in historical records:

Sp (Qi) =
𝑁∑
𝑗=1

∑
𝜋 ∈Π

𝑄𝑖 𝑗S𝜋 (𝑖, 𝜋), (6)

where Qi is the vector of recommended items as defined in Sec. 5.

For a path pattern 𝜋 and a user 𝑢, we use S(𝑢, 𝜋) as the coefficient

expressing the preference adjustment for the user 𝑢𝑖 .

S(𝑢, 𝜋) = 𝑤𝜋

D𝑢,V (𝜋)
∑

𝐿𝜋𝑢𝑣 ∈L𝜋
𝑢𝑣

ℓ
path

(
𝐿𝜋𝑢𝑣

)
(7)

Here,L𝜋
𝑢𝑣 is the set of all positive user–item paths starting from user

𝑢 with respect to path pattern 𝜋 to item 𝑣 . ℓ
path

(𝐿𝜋𝑢𝑣) =
∑ |𝜋 |
𝑖=1

(®𝑒0 +
®𝑟𝑖 ) · ®𝑒𝑖 (where 𝑒0 = 𝑢 and 𝑒 |𝜋 | = 𝑣) is the score of a path 𝐿𝜋𝑢𝑣 =

{𝑢, 𝑟1, 𝑒1, 𝑟2, 𝑒2, . . . , 𝑒 |𝜋 |−1, 𝑟 |𝜋 |, 𝑣}, which can easily be computed

following the methods proposed for current KG-based explainable

recommendation systems. 𝑤𝜋 represents the weight of the path

pattern 𝜋 in generated explainable paths:

𝑤𝜋 = log

(
2 + |L𝜋

𝑢𝑣 |∑
𝜋 ′ | L𝜋 ′

𝑢𝑣 |

)
(8)

Finally, D𝑢,V (𝜋) is the weight of path pattern 𝜋 in the training set

defined in Sec. 3. On the one hand, we retain the existing weights

of path scores as𝑤𝜋 , while on the other hand striving to break the

intrinsic explainable path patterns assigned to different groups of

users. For the latter, D𝑢,V (𝜋) serves as a regularization factor to

minimize the path diversity bias between the groups.

Diversity Score. Additionally, we also consider the fairness with

regard to explainable path diversity. For each user–item pair (𝑢, 𝑣),
we get access to the user–item path distribution based on the

retrieved explainable paths of the original algorithm [1, 41], as

{|L𝜋1

𝑢𝑣 |, |L𝜋2

𝑢𝑣 |, . . . , |L
𝜋 |Π |
𝑢𝑣 }. Let Π be a number of valid user–item

path patterns in the KG. Then we are able to calculate Simpson’s

Index of Diversity of such (𝑢, 𝑣) pairs as T𝑢𝑣 (Π, 𝑁𝑣), as defined in

Sec. 4.3, where 𝑁𝑣 denotes the total number of retrieved paths start-

ing from user 𝑢 and ending up at item 𝑣 as
∑
𝜋 ′ | L𝜋 ′

𝑢𝑣 |. We can then

define our diversity score, which can be regarded as introducing

regularization for explainable path diversity:

S
d
(Qi) =

𝑁∑
𝑗=1

∑
|𝜋 |
𝑄𝑖 𝑗T𝑖 𝑗 (Π, 𝑁 𝑗 ) (9)

Fairness score. By aggregating the personalization and diversity

scores, we can calculate the fairness score for user 𝑢𝑖 defined as:

𝑓𝑖 (Qi) = 𝛼Sp (Qi) + (1 − 𝛼)𝜆S
d
(Qi), (10)

where 𝛼 ∈ [0, 1] is the weighting factor of path score Sp (Qi),
compared to the diversity score S

d
(Qi). 𝜆 is a scaling factor so that

Sp and S
d
can be normalized onto the same scale.

Recommendation score. We follow the baseline method of calcu-

lating the preference score S(𝑖, 𝑗) between user 𝑢𝑖 and item 𝑣 𝑗 . Our

goal becomes to find a selection strategyRrec (Qi) =
∑𝑁

𝑗=1𝑄𝑖 𝑗S(𝑖, 𝑗)
for each user 𝑢𝑖 to recommend 𝐾 items that meet the group fair-

ness constraints. Therefore, we can formulate the optimization
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recommendation problem as follows:

max

𝑄𝑖 𝑗

R =

𝑚∑
𝑖=1

Rrec (Qi) (11)

s.t.

𝑁∑
𝑗=1

𝑄𝑖 𝑗 = 𝐾, 𝑄𝑖 𝑗 ∈ {0, 1} (12)

𝐺𝑅𝑈 (𝐺1,𝐺2,Q) < 𝜀1 (13)

𝐺𝑅𝐸𝑈 (𝐺1,𝐺2,Q) < 𝜀2 (14)

Here, Eqs. 13 and 14 refer to the GRU and GEDU proposed in Def. 2

and 3, respectively, with 𝜀1 and 𝜀2 representing recommendation

performance and fairness disparity of baselines, correspondingly.

Moreover, the optimization could also be extended to individual

fairness constraints. We are able to take the constraints of the Gini

coefficient difference as proposed in Defs. 4 and 5. In this case, we

replace Eqs. 13 and 14 with following:

𝐼𝑅𝑈 (Q) < 𝜀3 (15)

𝐼𝑅𝐸𝑈 (Q) < 𝜀4 (16)

Here, 𝜀3 and 𝜀4 are the individual recommendation and fairness

disparity of the corresponding baselines.

The optimization of Eq. 11 can be cast as a 0-1 integer program-
ming optimization problem. Although it is NP-complete, we can use

fast heuristics
4
to find feasible solutions. While these may converge

to a local optimum rather than a global one, our empirical findings

show that the fairness-aware top-𝐾 selection obtained is superior

enough compared to the baseline methods. Further details will be

given in Sec. 7.

Ranking Score. After solving the optimization problem and se-

lecting which items to recommend under fairness constraints for

each user as Q̂i, we still need to rank the 𝐾 items to determine

in which order they are presented. This also allows us to better

compare the results against the baseline methods. Specifically, we

create a top-k recommendation list with items ranked in descend-

ing order by the optimized recommendation score and the fairness

score, defined as:

R
rank

(Q̂i) = 𝛽𝛾 𝑓𝑖 (Q̂i) + (1 − 𝛽)Rrec (Q̂i), (17)

where 𝛽 ∈ [0, 1] is the weighting factor of the ranking fairness

score. Similar to the 𝜆 above, we also add a factor 𝛾 , which achieves

the scaling effect.

7 EXPERIMENTS
In this section, we first briefly describe the four real-world e-commerce

datasets used for experiments. Then, we evaluate our proposed

fairness-aware algorithm on top of existing explainable recommen-

dation approaches. A series of quantitative and qualitative analyses

demonstrate the positive effects on both fairness metrics and the

recommendation performance.

7.1 Dataset and Experimental Setup
Datasets. All of our experiments are based on Amazon item e-

commerce datasets [24]. The collection consists of four different

domains: CDs and Vinyl, Clothing, Cell Phones, and Beauty. It should

4
We use the Gurobi solver, https://www.gurobi.com/.
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Figure 3: Results of Fairness-aware HeteroEmbed on Beauty
dataset when fix 𝛽 = 0.5 (a-c) and fix 𝛼 = 0.75 (d-f).

be noted that each dataset is considered as an independent bench-

mark that constitutes a respective knowledge graph with entities

and relations crawled from Amazon
5
. Thus, the evaluation results

are not comparable over different domains. The statistical details

and train/test split correspond exactly to those of previous work

in this area [1, 41]. Note that following Xian et al. [41], there is no

constraint on possible path patterns, so any path between a user

and the recommended item is considered to be valid. However, since

shorter paths are more reliable for users as explanation for recom-

mendation, we only consider user–item paths with a length of up

to 3. We utilize the path patterns extracted from the KG dataset by

the baselines for an equal comparison.

Experimental Setup. As a prior investigation to verify the ratio-

nality of the unfairness, we first study the user interaction difference

in terms of path distribution and the recommendation performance

disparity over three state-of-art explainable RSs over KGs [1, 38, 41].

They rank the recommendation list by calculating the relevance

scores of user–item pairs. Ai et al. [1] picks items using translational

entity embeddings, while Xian et al. [41] computes the score as a

path reward via reinforcement learning. Wang et al. [38] propose

an attention-based collaborative knowledge graph method.

Following previous work, we consider as metrics the Normalized

Discounted Cumulative Gain (NDCG) and F1 scores, two popular

metrics to evaluate the recommendation performance. F1 scores

provide the harmonic mean of precision and recall, while NDCG

evaluates the ranking by considering the position of correctly rec-

ommended items. We evaluate the group fairness and individual

fairness in terms of the recommendation quality and explanation

diversity, with the metric defined in Sec. 5.

7.2 Main Results
First, we show both the recommendation improvements and fair-

ness effectiveness of our fairness-aware algorithm compared to

state-of-the-art explainable RS models over KGs in terms of NDCG

and F1 scores as well as Group Recommendation Unfairness (𝐺𝑅𝑈 )

between active group users and inactive group users.

5
https://www.amazon.com/

Session 1B: Knowledge and Explainability  SIGIR ’20, July 25–30, 2020, Virtual Event, China

75

https://www.gurobi.com/


0.0 0.2 0.4 0.6 0.8 1.0
value of α

0.038

0.040

0.042

0.044

G
in

i
o

f
S

ID

Ours

HeteroEmbed

0.0 0.2 0.4 0.6 0.8 1.0
value of α

0.82

0.84

0.86

0.88

0.90

G
in

i
o

f
R

ec
M

et
ri

cs

Ours NDCG

Ours F1

HeteroEmbed NDCG

HeteroEmbed F1

0.0 0.2 0.4 0.6 0.8 1.0
value of α

0.040

0.045

0.050

G
a

p
o

f
S

ID

Ours

HeteroEmbed

(a) Gini of 𝑆𝐼𝐷 (b) Gini of Rec. Metrics (c) Gap of 𝑆𝐼𝐷

0.0 0.2 0.4 0.6 0.8 1.0
value of β

0.036

0.038

0.040

0.042

0.044

G
in

i
o

f
S

ID

Ours

HeteroEmbed

0.0 0.2 0.4 0.6 0.8 1.0
value of β

2.75

3.00

3.25

3.50

3.75

4.00

G
ap

o
f

R
ec

M
et

ri
cs

Ours NDCG

HeteroEmbed NDCG

0.0 0.2 0.4 0.6 0.8 1.0
value of β

0.035

0.040

0.045

0.050

G
a

p
o

f
S

ID

Ours

HeteroEmbed

(d) Gini of 𝑆𝐼𝐷 (e) Gap of Rec. Metrics (f) Gap of 𝑆𝐼𝐷

Figure 4: Results of Fairness-aware HeteroEmbed on Cell
Phone dataset when fix 𝛽 = 0.5 (a-c) and fix 𝛼 = 0.75 (d-f).
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Figure 5: Results of Fairness-aware PGPR on Beauty dataset
when fix 𝛽 = 0.5 (a-c) and fix 𝛼 = 0.75 (d-f).

The main results on the four Amazon datasets are provided in

Table 2. Note that the Difference is calculated by the𝐺𝑅𝑈 defined

in Eq. 3 through abstraction of corresponding metric scores be-

tween inactive users and active users. The overall performance

is calculated by the 95% of inactive users scores with the addi-

tion of 5% of active users scores, which matches the ratio of the

group split.
6
Our method outperforms all the baseline approaches

for recommendation by a large margin in all settings. All of our

fairness-aware algorithms take uniform parameters with 𝛼 = 0.75

and 𝛽 = 0.5. The overall performance of both approaches with

fairness constraints even got boosted, while shrinking the 𝐺𝑅𝑈

fairness disparity between the groups. For example, on the Clothing

dataset, our fairness-aware algorithm over PGPR achieves 3.101%

in NDCG, which is higher than 2.856% of vanilla PGPR, and the

group unfairness decreases to a great extent, from 1.410% to 0.233%.

Similar trends can be observed for the other datasets. Although

we sacrifice some of the performance for the most active users,

we substantially boost the performance for the inactive users. The

disparity between inactive and active users gets closed for group

fairness.

6
We report the results of the baselines with our own implementation. There is a slight

discrepancy compared to original results.
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Figure 6: Results of Fairness-aware PGPR on Cellphone
dataset when fix 𝛽 = 0.5 (a-c) and fix 𝛼 = 0.75 (d-f).

It is fairly remarkable that after adopting the fairness-aware

algorithm over two recent state-of-the-art baseline methods, we

are able to retrieve substantially better recommendation results

than the original methods. We conjecture that our algorithm better

harnesses the potential of current explainable recommendation

methods by adapting the path distribution so that more diverse

reasoning paths can be served to the users. Since the inactive users

undergo a prejudiced treatment due to the homogeneous user inter-

actions with lower user visibility, they tend to benefit more under

our fairness-aware algorithm.

7.3 Ablation Study
Besides recommendation performance, we also study how different

weights for the fairness scores influence the fairness results with

regard to the diversity metrics defined in Def. 3 and the individual

fairness metrics using the Gini coefficient defined in Defs. 4 and 5.

7.3.1 Study of fairness weight 𝛼 . We first show how the choice of

personalization weight 𝛼 from Eq. 10 affects the recommendation

performance, group fairness, and individual fairness. The results

are plotted as (a-c) in Figs. 3, 4, 5, and 6, including both our fairness-

aware performance (red and purple curves) and the baselines (blue

and green curves).

We observe that our model consistently outperforms vanilla

HeteroEmbed and PGPR baselines under all settings of 𝛼 in terms

of Group Explainable Diversity Unfairness (𝐺𝐸𝐷𝑈 ) and individ-

ual Recommendation Unfairness (𝐼𝑅𝑈 ), as shown in parts (a) and

(c) of the aforementioned figures. The unfairness is minimized at

the point of 𝛼 = 1.0, i.e., when not accounting for historical path

distributions, but focusing solely on debiasing the intrinsic user

preferences, our model can achieve a high degree of fairness. How-

ever, with an apt choice of 𝛼 , we can not only benefit the 𝐼𝑅𝑈 in

(b) figures, but also maintain the more reliable 𝐺𝐸𝐷𝑈 and 𝐼𝑅𝑈 .

7.3.2 Study of ranking weight 𝛽 . Next, we consider the effect of
the ranking weight 𝛽 from Eq. 17. Since we already obtain the 𝐾

items from the filtered original top-𝑁 list, the 𝛽 factor does not

change the F1 score. We provide results on the Cellphones and

Beauty datasets, first fixing 𝛼 = 0.75, which was shown to give

strong results in the main results.
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Subfigures (d-f) in Figs. 3, 4, 5, and 6 plot the results. We observe,

first of all, that as the weight of 𝛽 increases, our fairness-aware

algorithm is able to consistently reduce the 𝐺𝐸𝐷𝑈 and 𝐼𝐸𝐷𝑈 . For

𝛽 = 0, there is no external fairness weight incorporated into the

overall ranking score, which obtains slightly better results than the

baselines owing to the optimization process. In contrast, 𝛽 = 1.0

represents only considering the fairness weights but ignoring the

original recommendation scores. The optimal choice for minimiz-

ing the 𝐼𝑅𝑈 is when 𝛽 is around 0.2 for Fair HeteroEmbed, while

for Fair PGPR, 𝛽 = 1 obtains better results. This might be because

the PGPR method prunes away some less salient word features via

TF-IDF scoring. In such cases, paths containing the feature word

will be eliminated. Also, some inactive users prefer making com-

ments on items rather than purchasing them. Such preprocessing

will make the inactive users hold even less interactions. Therefore,

our fairness-aware explainable algorithm yields strong fairness

improvements when 𝛽 = 1 for the PGPR baseline.

7.4 Study of Recommendation Quality under
Fairness-Aware Algorithm

After studying the fairness metrics, we next study how the rec-

ommendation quality is affected by the parameter choices. From

Eqs. 10 and 17, we can infer that changes of 𝛽 can exert more influ-

ence than 𝛼 . As we fix the path fairness weight 𝛼 = 0.75, the right

side of Table 3 indicates the recommendation performance of inac-

tive users initially is boosted as 𝛽 grows, and then the performance

starts to drop as 𝛽 approaches 1. Similar conclusions can be drawn:

If there is less weight on the recommendation score Q̂i as a guide
to create a proper ranking of recommended lists and balance the

fairness effects, the role of generated explainable paths would grad-

ually diminish, leading the model towards making inappropriate

ranking decisions.

The left part of Table 3 reflects the recommendation performance

variance in terms of path fairness weight 𝛼 . As we discussed before,

𝛼 = 0 suggests the fairness-aware algorithm is no longer taking

advantage of the user debiasing. As the ratio of 𝛼 increases, the

larger the effect of the self adjustment regularization, which leads

to a decreasing 𝐺𝑅𝑈 . However, when 𝛼 = 1, both the recommen-

dation performance and the 𝐺𝑅𝑈 decrease at a small rate. We can

conclude that the zero score of path diversity mean that the weight

of the generated path diversity has been eliminated, which leads

to fairness scores only coming from the path ranking component.

Thus, the recommendation performance degrades to a small extent.

The results appear reasonable because the model naturally will

behave less intelligently if it either completely ignores the user’s

historical interactions or if it considers only the path debiasing. Any

extreme regularization of one particular side may harm the recom-

mendation performance. Therefore, it is indispensable to choose

the proper hyper-parameters for robust performance.

Still, note that no matter how we change 𝛼 or 𝛽 , in Table 3, we

can observe that the group unfairness metric 𝐺𝑅𝑈 is always better

than for the baselines.

7.5 Case study
Figure 7 illustrates the real effects of our fairness-aware algorithm

in terms of path diversity and the accuracy of predicted items. The

Beauty Cell Phones

Metric(%)

Inactive (IA) Active (A) GRU IA A GRU

NDCG F1 NDCG F1 NDCG F1 NDCG NDCG NDCG

(*) 6.075 2.756 11.930 10.132 5.855 7.376 5.645 9.395 3.75

0.0 6.317 2.916 12.088 9.765 5.771 6.949 5.658 8.821 3.163

0.125 6.354 2.926 12.088 9.790 5.734 6.864 5.782 8.888 3.106

0.25 6.407 2.930 12.089 9.800 5.682 6.870 5.924 8.999 3.075

0.375 6.459 2.933 12.206 9.802 5.747 6.869 6.033 9.254 3.221

0.5 6.470 2.935 12.232 9.808 5.762 6.873 6.037 9.284 3.247

0.625 6.462 2.928 12.230 9.834 5.768 6.906 5.974 9.216 3.242

0.75 6.451 2.924 12.229 9.853 5.778 6.929 5.782 9.093 3.211

0.875 6.398 2.872 12.191 9.776 5.793 6.904 5.479 8.667 3.188

1.0 6.368 2.836 12.145 9.732 5.777 6.891 5.217 8.373 3.156

Table 3: Left: Performance under different ratios of 𝛼 for
Fairness-aware HeteroEmbed with fixed 𝛽 = 0.5. Right: Per-
formance under different ratios of 𝛽 for Fairness-aware Het-
eroEmbed with fixed 𝛼 = 0.75. (*) is baseline performance
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Figure 7: Case study of real recommendation paths, before
and after adding our fairness algorithm.

example comes from the Beauty dataset. The upper part illustrates

the outputs of the original vanilla PGPR explainable RS method,

which neglects path diversity. It is filled with “user–mention” paths

connecting to the predicted items with only 4 items appearing

in the top-𝑘 list. For comparison, after adding our fairness-aware

algorithm, the model predicts 6 correct items that users are will-

ing to purchase, associating them with diverse explainable paths.

Hence, our approach is able to invoke more items, finding alterna-

tive kinds of user–item paths. At the same time, considering the

“facial cleaner” example, our fairness-aware algorithm considers

two further items connecting with it, so that the user is able to buy

further related items. This shows how our fairness-aware method

not only is capable of considering a more diverse and comprehen-

sive set of explainable paths, but also ends up finding more correct

recommendations.

8 CONCLUSIONS
In this work, we study the prominent problem of fairness in the

context of state-of-the-art explainable recommendation algorithms
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over knowledge graphs. We first quantify unfairness at both the

individual level and the group level. Based on this, we propose fair-

ness metrics in terms of path diversity as well as the recommenda-

tion performance disparity. We then present a generalized fairness-

aware algorithm that is capable not only of reducing the disparity

but also of maintaining the recommendation quality.We extensively

evaluate our model on several real-world datasets, and demonstrate

that our approach reduces unfairness by providing diverse path pat-

terns and strong explainable recommendation results. The source

code of our work at https://github.com/zuohuif/FairKG4Rec is pub-

licly available.
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