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ABSTRACT
Fonts carry strong emotional and social signals, and can affect user
engagement in significant ways. Hence, selecting the right font is a
very important step in the design of a multimodal artifact with text.
Currently, font exploration is frequently carried out via associated
social tags. Users are expected to browse through thousands of fonts
taggedwith certain concepts to find the one that works best for their
use case. In this study, we propose a new multimodal font discovery
method in which users provide a reference font together with the
changes they wish to obtain in order to get closer to their ideal
font. This allows for efficient and goal-driven navigation of the font
space, and discovery of fonts that would otherwise likely be missed.
We achieve this by learning cross-modal vector representations
that connect fonts and query words.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; • Human-centered computing → Interactive systems
and tools.
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1 INTRODUCTION
Given that thousands of fonts are now freely available online, se-
lecting among them is typically carried out via associated social
tags. However, supporting users in deciding which fonts to pick is
challenging when this is based only on such tagging. The ability
of users to explore the different fonts is limited both by the incom-
pleteness of the tagging and the limited tag inventory. If the tag
inventory grows, the risk of missing tags for fonts increases. Even
in an ideal scenario with a large tag inventory and in the absence of
any missing tag associations, users would still suffer from the large
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Figure 1: An example font search using the proposed multi-
modal querying strategy.

number of fonts they would need to browse through to eventually
find the ideal font for their use case.

In a recent user study, Wu et al. interviewed design practitioners
regarding their font selection process and the challenges they faced
[37]. Unsurprisingly, one of the main difficulties reported by the
participants was identifying fonts that match a particular semantic
profile. One participant reported this as follows:

“When I’m looking for a particular font, [I] knowwhat
feeling [I] want the font to have. But I just spent so
much time browsing and browsing, and still couldn’t
find the one.”

This suggests the need for systems that support a more open-ended
form of font discovery, allowing users to search for arbitrary at-
tribute query words, including ones that are not present as tags in
the data at all.

In the same user study, the participants also expressed their
desire to slightly modify fonts that otherwise partially fulfilled their
needs but were “just a little bit off” [37]. They further emphasized
the need for unique fonts, so as to avoid very popular fonts and
better differentiate their design product from those of competitors.

In this paper, we propose a new multimodal font discovery
method in which users provide a reference font that is visually
similar to what they are seeking but only partially fulfills their
needs, along with the changes they would like to obtain to get
closer to their ideal font. Figure 1 shows an example of this. If the
user likes the style of a certain font, but needs a happier version
of it, they can provide that font as a reference and indicate the
change(s) they wish to have.

Using this mechanism, the users not only satisfy their need to
slightly modify a font, but also have the ability to explore niche
sections of the available font inventory to find a unique font, without
spending their effort on reviewing fonts that are far from what they
need. We enable this form of search strategy by embedding fonts
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and words into a joint cross-modal representation space, enabling
the use of multimodal vector arithmetic.

The above technique not only enables novel font discovery meth-
ods, but also helps overcome other semantic challenges, specifically,
the challenges of limited tag inventories and of missing font–tag
connections. Users obtain access to the entire vocabulary that the
language (in our case English) provides, and a font need not be
tagged with the specific words that users associate them with, since
the method is able to infer such connections.

The rest of the paper is organized as follows. Section 2 covers
pertinent related work. Section 3 describes our data acquisition
process to procure a large tagged font collection. In Section 4, we
introduce our method to induce cross-modal vector representations.
Section 5 then presents how we can use our method to search
for fonts based on an arbitrary desired attribute, while Section 6
describes how we can invoke it to estimate font similarity, so as to
find fonts based on a reference font. These are the two key building
blocks of our multimodal search strategy, which is presented in
Section 7. We conclude the paper in Section 8 with a brief summary
and discussion of our results.

2 RELATEDWORK
2.1 Font Analytics
There has been growing interest in computational approaches to
analyzing fonts not just visually but with regard to their semantic
associations. These studies rely on crowdsourcing [27], surveys
[31], and Web data [5] to obtain a reference dataset that labels fonts
with regard to semantic attributes such as happy, thanksgiving, or
pixel. Crowdsourcing and surveys yield datasets that are small (tens-
to-hundreds of fonts, tens of attributes) but clean and complete, i.e.,
they provide a fairly accurate labeling of every font with regard to
every attribute. In contrast, crawled Web data is large (thousands
of fonts, thousands of attributes) and noisy (i.e., missing many font–
attribute connections). Based on small amounts of crowdsourced
data, previous work [17, 19] has explored predicting attributes
for new fonts, but limited to the very small original inventory of
semantic attributes, without an ability to infer new tags. Another
study [18] explored inferring emotions associated with fonts, which
were then used to recommend fonts for a large inventory of English
words based on a crowdsourced emotion lexicon. However, this
method only works for a limited set of fonts for which a complete
labeling of required semantic attributes is available. Chen et al. [5]
use a Web dataset very similar to ours and propose a generative
feature learning algorithm to infer font–tag connections. However,
different from our study, they do not consider unseen tags.

2.2 Font Exploration Methods
In addition to tag based search, O’Donovan et al. [27] implement a
similarity-based searchmethod, inwhich they learn a font similarity
metric using a crowdsourced dataset to find fonts that are similar to
a reference font. The same dataset is leveraged in Section 6 of our
paper, which also offers a discussion of how the results compare.

Wang et al. [36] propose a deep convolutional neural network
(CNN) approach to help users identify the fonts employed in a
photographic image. The hidden layers of such trained deep convo-
lutional neural networks can also be used as vector representations

of fonts [19]. In Section 6, we compare CNN embeddings with our
induced vector representations, and find that our method yields
improved font similarity predictions.

FontJoy [28] is an online tool that uses deep convolutional font
embeddings to find pairings of fonts, i.e., fonts that share an overar-
ching theme but have a pleasing contrast. Jiang et al. [15] present
a font-pairing method based on font-pair data crawled from PDF
documents on the Web.

Choi et al. [6] work with a Web dataset similar to ours, and
develop an inspiration tool that provides unexpected but useful
font images or concept words in response to a user query. While
their tool limits the queries to known tags from the data, we explore
the zero-shot case. For this, we induce a cross-modal representation
to facilitate font exploration. There has been extensive work on
connecting images and text [1, 7, 22, 25, 33], while our cross-modal
vector space connects fonts and words.

Other methods directly seek to recommend fonts given the text
that is to be rendered. To this end, Shirani et al. [34] explore a
series of deep neural network models that assess a short input
text and perform multi-label classification to select the best-fitting
ones among 10 different display fonts. Kawaguchi & Suzuki [17]
recommend fonts and colors for creating e-book cover pages auto-
matically by classifying both fonts and the e-book text with regard
to 12 emotional attributes.

2.3 Impact of Fonts
Marketing. There is substantial marketing-related research on

the impact of the choice of font on consumer attitudes. One study
[30] shows that fonts that are not in line with the intended message
can negatively affect a company’s perception in terms of profes-
sionalism, trust, and intent to act. Another study [10] determined
that fonts perceived as natural increase the perception of associated
products as being healthy. Velasco et al. [35] identify interesting
connections between taste and fonts, e.g., round typefaces indicat-
ing a sweet taste in the context of food packaging.

Documents. There are also studies comparing the perception of
the same textual content using different fonts. Shaikh et al. [32]
show that different fonts may give rise to different perceptions of
an email message. Juni & Gross [16] similarly find that the same
text in a news article can be perceived as being funnier or angrier
based on the characteristic traits of the fonts being used.

Human-Computer Interaction. Lewis & Walker [21] ask users to
press a certain key if the words slow or heavy appear, and another
key if fast or light appears. They repeat such tasks with fonts that
match or do not match the underlying meaning of the presented
words. Fonts that are coherent with the word meaning are found
to decrease the user response times. Hazlett et al. [13] ask users
to mark a displayed word as positive or negative. Once again, the
coherence between the font connotations and the word meaning is
found to increase user performance in the described task.

Visualization. Kulahcioglu et al. [20] proposed a method to gen-
erate word cloud visualizations with a particular emotional impact.
To this end, their method automatically recommends suitable fonts
and colors to obtain the desired effect.
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Figure 2: Sample font ”Mountains of Christmas” with the
tags: serif, christmas, bouncy, staggered, curly, cute, playful,
casual, warm, fun, handwritten, text, google web.

Figure 3: Histograms analyzing tag frequencies. (a) Distribu-
tion of tag frequencies across the entire dataset. (b) Distribu-
tion of tag counts per individual fonts.

3 FONT TAGGING DATA
Our study assumes a large collection of fonts along with substantial
(yet incomplete) social tagging. In the following, we describe how
we procure such a dataset.

3.1 Data Crawling
We collected font–tag associations from www.1001fonts.com, a
website that catalogs font files along with user-assigned tags. In
Figure 2, a sample font name is shown together with its associated
tags. As for most such Web resources, font families are tagged as a
whole, e.g., the italic or bold versions of a typeface are not tagged
separately. Similar to previous work [5], we adopt the ”regular”
version of a font family for use in our dataset. Unlike previous
studies, however, we apply a series of data cleaning steps to reduce
the noise to the extent possible.

3.2 Data Cleaning
We filter out irrelevant fonts and tags as an attempt to clean other-
wise noisy Web data.

3.2.1 Filtering Out Fonts. Dingbat fonts are fonts that consist en-
tirely of symbols instead of alphabetical or numerical characters.
They are used for decorative or symbolic purposes. As they are not
relevant in rendering text, we discard all fonts assigned the dingbat
tag in the data, which accounts for around 600 fonts.

3.2.2 Filtering Out Attributes. As we are interested in tags that
describe semantic attributes of fonts and enable font discovery
along such attributes (e.g., “happier”), we eliminate around 100
tags that merely denote font families (e.g., serif, sans-serif, slab
serif ) or other types of information (e.g., google web, 10pt, 12pt)
that are not directly related to font semantics. We also eliminate a
few tags that are not in English. We retain typographical tags that
have the potential to provide semantic connections, such as wide,
handwritten, gothic, poster, and outlined.

Figure 4: Tags digital, hairline, bouncy, playful, futuristic,
halloween, graffiti, handwritten, and children rendered us-
ing examples of fonts tagged accordingly in the dataset.

Figure 5: Sample emotion-expressing attributes rendered us-
ing fonts tagged accordingly in the dataset.

As a concrete example, for the font given in Figure 2, the tags
serif, text, google web, and medium are eliminated, leaving the font
with the tags christmas, bouncy, staggered, curly, cute, playful, casual,
warm, fun, handwritten, and light.

3.3 Dataset Summary
After the above filtering, the resulting dataset contains around 10.4K
fonts, 2.6K tags, and 54K font–tag assignments, with an average
of 5 tags per font. Figure 3 shows the distributions of (a) overall
tag frequencies and (b) tag counts per font. Most tags are used to
tag fewer than a hundred fonts, and most fonts have fewer than
10 tags. Figure 4 displays three font examples for nine selected
tags from the dataset, aiming to give a feeling of the range of
the semantic connections. Figure 5 provides examples of fonts for
sample emotion-expressing attributes. Figure 8 in Section 5 also
provides examples of fonts for the ten most frequent attributes.

4 CROSS-MODAL REPRESENTATION
LEARNING

In order to facilitate identifying fonts that are similar to a given
input font but differ along a particular attribute (“like this but
happier”), we induce a cross-modal vector representation space.
This not only allows us to jointly embed both fonts and query
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Figure 6: Overview of the proposed cross-modal representa-
tion induction method.

words in a single vector space, but also allows us to conduct vector
arithmetic to locate fonts that better match a given semantic profile.

Our vector space induction method is summarized in Figure
6. We induce font embeddings using a deep convolutional neural
network, and induce word embeddings by modifying pretrained
distributed word embeddings to better satisfy antonymy and syn-
onymy constraints. The final step is to connect the aforementioned
font and word embeddings in a single cross-modal vector space.

Our method assumes as input a set F of fonts, which are asso-
ciated with a set A of font attributes via a Boolean font–attribute
matrix M ∈ {0, 1} |F |×|A | based on the data described in Section 3.

4.1 Font Embedding Induction
Our first goal is obtain a font embedding matrix F ∈ R |F |×𝑑 that in
its rows provides a 𝑑-dimensional vector representation v𝑓 ∈ R𝑑
for each font 𝑓 ∈ F .

These vector representations are expected to reflect visual simi-
larity, i.e., fonts 𝑓 , 𝑓 ′ that are visually similar ought to have similar
vectors v𝑓 , v𝑓 ′ . To achieve this, for each font 𝑓 ∈ F , we generate an
image rendering a fixed set of 14 different letters from the alphabet
using that font so as to demonstrate its visual characteristics.

We then feed these images into a deep convolutional neural
network with residual connections, specifically a ResNet-18 [14]
model pre-trained on ImageNet [8]. For each font, we extract the
resulting 512-dimensional latent representation from the average
pooling layer of the model.

Finally, for dimensionality reduction to 𝑑 = 300 dimensions,
we apply Principal Component Analysis (PCA) and project every
latent font representation into the space spanned by the first 𝑑
principal components in order to obtain the desired matrix F with
𝑑-dimensional vectors v𝑓 ∈ R𝑑 for fonts 𝑓 ∈ F .

4.2 Word Embedding Induction
Our next goal is to induce vector representations of tags. We start
out with the widely used 300-dimensional word2vec vectors pre-
trained on a large Google News dataset [23], which provides a word
embedding matrix W ∈ R |V |×𝑑 for a large vocabularyV of English
words. The vectors are based on contextual information and the
corresponding vector similarities reflect distributional similarity.

However, distributional similarity in general and word2vec word
vectors in particular tend to give similar representations to words
with opposite meaning such as formal and informal [26]. To al-
leviate this issue, we apply the Counter-fitting algorithm [24] to
transform the original word embeddingmatrixW into a new embed-
ding matrix W′ subject to antonymy constraints 𝐴 and synonymy
constraints 𝑆 . The algorithm minimizes the loss function

ℓ (W,W′) =
∑

(𝑢,𝑤) ∈𝐴
1 − 𝑑 (v′𝑢 , v′𝑤)

+
∑

(𝑢,𝑤) ∈𝑆
𝑑 (v′𝑢 , v′𝑤)

+
∑
𝑤∈V

∑
𝑢∈𝑁 (𝑤)

max(0, 𝑑 (v′𝑢 , v′𝑤) − 𝑑 (v𝑢 , v𝑤)), (1)

where the notation v𝑤 denotes the vector for𝑤 in W, v′𝑤 denotes
the vector for𝑤 in W′, and 𝑁 (𝑤) denotes the set of nearest neigh-
bors of𝑤 in W′ with cosine similarity ≥ 𝜏 = 0.8. For the setting of
𝜏 as well as the constraint sets 𝐴 and 𝑆 , which are extracted from
PPDB [11] and WordNet [9], we follow the original study [24].

The resulting output embeddings W′ are of the same dimension-
ality as the input embeddings, i.e., 300-dimensional.

4.3 Cross-Modal Font–Word Representations
Finally, we induce a cross-modal vector space that jointly embeds
both fonts and words. We start out with the font embedding matrix
F from Section 4.1 and the modified word embedding matrix W′

from Section 4.2.
In order to be able to connect these two spaces, we draw on the

font–attribute matrix M ∈ {0, 1} |F |×|A | based on the tagging data
described in Section 3, from which we enumerate a set of pairs

𝑀 =

{
(𝑖, 𝑗)

��� 𝑤 𝑗 ∈ V, 𝑖 ∈ argmax
𝐼 ⊂{𝑖 |𝑚𝑖 𝑗>0}, |𝐼 | ≤𝑘

∑
𝑖∈𝐼

1∑
𝑗 ′𝑚𝑖 𝑗 ′

}
. (2)

Thus, for each tag 𝑤 𝑗 in our word embedding vocabulary V , we
retain the top-𝑘 fonts ranked in terms of the inverse of the number
of tags those fonts have. The intuition of this filtering is that fonts
with fewer non-zero entries 𝑚𝑖 𝑗 ′ in M tend to more specifically
represent their tags compared to fonts that have numerous different
tags. In our experiments, we consider different choices of 𝑘 .

We construct new font and word alignment matrices F0, W0,
such that the 𝑛-th row contains the font embedding from a normal-
ized version of F for the font in the 𝑛-th entry in 𝑀 , or the word
embedding from a normalized version of W′ for the tag mentioned
in that entry, respectively. For this normalization of F and W′, we
first normalize each row to have a length of 1, then apply column-
wise mean centering, and thereafter re-normalize each row to again
have unit length. [4]. To facilitate a mapping between the font and
word representations, we follow a framework originally proposed
for cross-lingual alignment [3]. We apply a variant of Mahalanobis
whitening by computing F1 = F0 (F⊺0 F0)−

1
2 , W1 = W0 (W⊺0 W0)−

1
2

so as to decorrelate different columns, as this simplifies the cross-
modal mapping.

To learn a mapping, we solve what is known as the Procrustes
problem, which, following Schönemann (1966) [29], can be achieved
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by computing a singular value decomposition (SVD) of F⊺1 W1 as
UΣV⊺ = F⊺1 W1 to obtain orthogonal projection matrices U, V of
the two spaces into a single target space. We apply this mapping
as F2 = F1UΣ

1
2 and W2 = W1VΣ

1
2 , where Σ

1
2 is incorporated for a

symmetric reweighting of the columns in both matrices according
to their cross-correlation. Subsequently, we apply a coloring opera-
tion that reverses the aforementioned Mahalanobis whitening, by
computing F3 = F2U(F⊺0 F0)

1
2 U and W3 = W2V(W⊺0 W0)

1
2 V.

The final cross-modal output embedding matrix E provides vec-
tors for fonts 𝑓 ∈ F taken from F3 in its first |F | rows and subse-
quently provides vectors for words𝑤 ∈ V taken from W3.

5 ZERO-SHOT ATTRIBUTE-BASED
RETRIEVAL

In this section, we describe and evaluate how our cross-modal em-
beddings enable zero-shot support for novel attributes. The goal
is to be able to retrieve suitable fonts for a new attribute 𝑎 that
does not at all occur in the font–tag dataset used to induce the
embeddings. In light of the incompleteness of social tags, this is an
important task for the font domain. Additionally, it is also impor-
tant as an indicator of the potential of our proposed multimodal
discovery method, for which it serves as a key building block.

5.1 Method
We first obtain a cross-modal embedding matrix E following the
three steps of our technique as described in Section 4. To predict
the fonts associated with an attribute 𝑎 ∈ V , even if 𝑎 ∉ A, we
can consult E to obtain the cross-modal embedding e𝑎 for 𝑎 as well
as the cross-modal embedding vectors e𝑓 for fonts 𝑓 , and simply
select those fonts 𝑓 ∈ F that maximize

e⊺
𝑓

e𝑎

| |e𝑓 | |2 | |e𝑎 | |2
, (3)

i.e., the ones most similar to 𝑎 in terms of cosine similarity.

5.2 Evaluation
To evaluate this, we apply the above method for the 100 most
frequent attributes 𝑎 in A using leave-one-out cross-validation.
Thus, for each target attribute 𝑎, we separately induce a different
cross-modal embedding matrix E based only on the data for A \ 𝑎,
i.e., excluding 𝑎 completely from M. The above method is used to
retrieve suitable fonts for attribute 𝑎 without it having observed
any annotations of this attribute at all.

Figure 8 shows top three fonts as predicted by this method for
the most frequent ten attributes. As an example, for the attribute
handwritten, representations are induced on the data excluding any
tagging of fonts with the tag handwritten. The three fonts presented
for handwritten are fonts with font vectors of the highest cosine
similarity to our vector representation of the word handwritten.

The check marks next to the fonts indicate that the font is tagged
with the corresponding attribute in the Web dataset, and hence the
prediction is deemed accurate. The second font for handwritten
has this symbol, confirming its accuracy. Nonetheless, as the Web
dataset is known to have missing tag annotations, the lack of an

Figure 7: Top three fonts for the attributes narrow and wide
as predicted by cross-modal embeddings based on uncon-
strained original word vectors (without our modification,
𝑘 = ∞).

association in the dataset does not necessarily mean that the pre-
diction is inaccurate. In the case of handwritten, all of the three
predicted fonts appear to represent the attribute, thus being accu-
rate predictions.

Table 1: Mean reciprocal rank results for the 10, 50, and
100 most frequent attributes. Unconstrained representa-
tions: cross-modal embeddings based on the original un-
constrained word vectors. Full method: cross-modal embed-
dings obtained based on modified word vectors, connected
to fonts using different font filtering thresholds 𝑘 .

Top 10 Top 50 Top 100

Unconstrained representations 0.31 0.33 0.22
Full method – 𝑘 = 1 Filtering 0.46 0.30 0.19
Full method – 𝑘 = 10 Filtering 0.46 0.35 0.23
Full method – 𝑘 = 50 Filtering 0.54 0.46 0.33
Full method – 𝑘 = 100 Filtering 0.45 0.40 0.28
Full method – 𝑘 = ∞ (No Filtering) 0.49 0.34 0.23

To quantitatively evaluate the results in this setting, precision
and recall are not well-suited, due to the incomplete tag annotations.
Instead, in Table 1 we report themean reciprocal rank for the top 10,
top 50, and top 100 most frequent attributes, which is based on the
rank of the first predicted font for an attribute that is also tagged
as such in the Web dataset. This gives us a lower bound on the
performance of our method. In addition to the results for our full
method, for comparison, we also evaluate a variant of our method
that omits the constraint procedure from Section 4.2 and instead
projects regular word2vec embeddings into a common space with
font embeddings, without filtering (𝑘 = ∞).

5.3 Results
Based on the results, our method retrieves fonts that are tagged with
the corresponding tag in the Web dataset in very early positions
of the ranked list; i.e., approximately the 2nd result for the top 50
attributes, and the 3rd result for the top 100 most frequent attributes
when using top 𝑘 = 50 fonts for training (Section 4.3).

Our full cross-modal induction procedure results in better per-
formance compared to the unconstrained variant, as the latter is
more likely to conflate attributes with different meanings. Figure 7
shows the top three predictions for the attributes wide and narrow
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Figure 8: Top three fonts for the most frequent ten attributes as predicted by our zero-shot attribute-based retrieval method.
The check marks represent results that are also tagged with the corresponding attribute in the Web dataset.

using the unconstrained variant. The fonts seem to represent at-
tributes that are antonyms of the intended attributes. This explains
the difference in performance between the two approaches.

In Figure 8, we observe that, in certain instances, the intended
meaning of an attribute is different in the Web dataset compared
to the word vectors. For example, the word black as a font tag is
typically used to represent very thick typefaces, while based on the
word vectors, it appears to be interpreted as a dark and pessimist
concept in zero-shot attribute-based prediction. Note that this issue
can easily be avoided if we move away from the zero-shot setting
and instead incorporate a few instances of the tag into our training.

Another interesting observation is that ambiguity may affect
the results in some cases. The tag light, for instance, is commonly
used to characterize fonts with thin lines. However, in our case,
the top three most similar fonts show other kinds of characteristics
that may creatively exemplify being light in the sense of not being
heavy, or perhaps are associated with light in the sense of lighting.
Technically, distributional word vectors encode a linear superposi-
tion of all observed senses of a word [2]. Similarly, tags in social
tagging platforms are often used in ambiguous ways [12].

6 ZERO-SHOT FONT SIMILARITY
We proceed to show how our cross-modal representations enable
the prediction of font similarity scores in a zero-shot setting, i.e.,
for fonts for which we do not possess any social tag annotations.
This as well is a useful building block for many font-related tasks,
including our proposed multimodal discovery method.

For evaluation, we draw on a crowdsourced dataset fromO’Donovan
et al. [27]. In their study, in each task, a user was given a reference
font and asked to select one out of two provided font options that
are most similar to the reference font. The dataset (which will be
referred to as T ) contains 2,340 such questions using 200 fonts, and
a total of 35,287 user responses. In our experiments, we exclude
questions and responses related to one single specific font for which
we were not able to obtain the font file.

6.1 Method
We first train a cross-modal embedding matrix E as described in
Section 4. For a question with a reference font 𝑓r, and possibly simi-
lar font options 𝑓a and 𝑓b, we consult E to obtain the corresponding

Table 2: Individual user choice based experiment results
for different user agreement levels. The column for the 0.5
agreement shows the results for the entire dataset, as the
agreement cannot be lower than 0.5. Oracle shows the max-
imum possible accuracy, as users don’t always agree.

User Agreement
≥0.5 ≥0.6 ≥0.7 ≥0.8 ≥0.9 =1

Font 70.20 73.05 77.06 81.20 86.48 90.64
Unconstr. 70.50 73.36 77.51 81.80 87.14 90.68
Full (𝑘 = ∞) 70.85 73.77 77.94 82.31 87.70 91.55
Full (𝑘 = 50) 70.89 73.86 78.07 82.44 88.03 91.78
Oracle 81.29 85.23 89.51 93.53 97.26 100.00

Table 3: Majority-choice based experiment results for differ-
ent user agreement levels. The column for the 0.5 agreement
shows the results for the entire dataset, as the agreement
cannot be lower than 0.5. The maximum accuracy in each
column is 100%, as for each question, the option with the
majority of the votes is considered as the user choice.

User Agreement
≥0.5 ≥0.6 ≥0.7 ≥0.8 ≥0.9 =1

Font 77.39 79.25 82.68 84.97 88.21 90.43
Unconstr. 77.78 79.45 83.10 85.67 89.08 90.61
Full (𝑘 = ∞) 78.26 80.00 83.58 86.21 89.63 91.48
Full (𝑘 = 50) 78.00 80.05 83.71 86.29 89.96 91.65

vectors e𝑓r , e𝑓a , e𝑓b and simply select the font

𝑓 = argmax
𝑓 ∈{𝑓a,𝑓b }

e⊺
𝑓

e𝑓r
| |e𝑓 | | | |e𝑓r | |

. (4)

6.2 Evaluation
We ensure a zero-shot evaluation setting by obtaining a new cross-
modal embedding matrix E based on training data 𝑀 that includes
only tag associations for fonts 𝑓 ∈ F \ T , i.e., fonts not considered
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Figure 9: Sample high user-agreement questions that our
method also agrees with (i.e., all users and our method pick
the highlighted options).

Figure 10: Sample high user-agreement questions that are
answered differently by our method (i.e., all users select the
highlighted options,whereas ourmethod selects the others).

in the evaluation data. For each question in the referred dataset, we
can then predict the answer for the similarity question and compare
it against the answers provided by the human annotators.

For some questions, users have strong agreement (e.g., all users
that answered the question select the same option), whereas for
others the agreement is lower (e.g., 8 users selecting option A, 7
users selecting option B). We thus analyze the performance of our
method for different user agreement levels. Figures 9 and 10 show
examples of questions with high user agreement, where our method
agrees with the users on the examples from Figure 9 and disagrees
with them for the ones in Figure 10.

We provide quantitative results in Tables 2 and 3. The results in
Table 2 consider each user response for a question as a separate
data point, and report the percentage of agreement between our
method and user responses for different user agreement thresholds.
In contrast, the results in Table 3 consider each question as a data
point, and assume that the option with the majority of the user
votes is deemed the correct response for that question.

6.3 Results
In both tables, results are compared for our original font embed-
dings F (“Font”), unconstrained (“Unconstr.”) cross-modal embed-
dings obtained using original word2vec word vectors without the
constraint-based modification from Section 4.2 and with 𝑘 = ∞,
and our full-fledged method to obtain the cross-modal embedding
matrix E (“Full”).

Overall, for all user agreement levels, the best results are obtained
using our full method. In all but one cases, our method obtains the
best results when filtering top 𝑘 = 50 fonts as described in Section
4.3, compared to using all available data for training.

This shows that our method of incorporating semantic informa-
tion into the visual font embeddings via cross-modal alignment
yields a representation that is slightly closer to human perception.

We find that as the user agreement increases, the accuracy of
our method also increases. Analyzing the disagreements, one of

Figure 11: Multimodal query samples with top-1 results.

the insights is that users very rarely rate an all-caps font as similar
to a mixed-case font, whereas our method is likely to do so, such
as for the question on the left in Figure 10. Such preferences could
be learned using a supervised font similarity method.

Our unsupervised results come fairly close to the supervised
results of O’Donovan et al. [27], who were able to reach an overall
individual user choice accuracy of 76.04% (where the oracle upper
bound is 80.79%) on the same evaluation dataset, except for the
one missing font in our experiments. Their method, however, is a
supervised one that learns a similarity metric on a training fold of
this evaluation dataset, and also uses a complete labeling of a set of
semantic attributes of the fonts, whereas our method is completely
unsupervised with regard to font similarity, and, as mentioned
above, we also completely omit any available tag information about
the tested fonts in order to make it a zero-shot experiment.

7 MULTIMODAL FONT DISCOVERY
At this point, the results from Section 6 show how our cross-modal
representations allow us to find similar fonts based on a reference
font, while earlier, in Section 5, we saw how we can find fonts
matching a desired attribute specification.

In this section, we show how these two notions can be com-
bined to enable a novel form of multimodal font discovery, and
demonstrate its results through sample queries.
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Figure 12: A multimodal query providing alternative direc-
tions in the top-3 results.

7.1 Method
We create the cross-modal embedding matrix E as described in
Section 4 using the Web font–tag dataset detailed in Section 3. For a
given font 𝑓 ∈ F and any suitable word𝑤 ∈ V , our goal is to find
fonts 𝑓 ′ ∈ F that are similar to 𝑓 and, at the same time, represent
the attribute𝑤 . Note that this word𝑤 need not have occurred as a
tag in our tagging dataset.

We first lookup in E the cross-modal representations of 𝑓 and
𝑤 as e𝑓 , e𝑤 , respectively, and then compute a target cross-modal
representation

e𝑡 = e𝑓 + e𝑤 . (5)
Given this target, we select the fonts 𝑓 ′ ∈ F that maximize

e⊺𝑡 e𝑓 ′

| |e𝑡 | | | |e𝑓 ′ | |
. (6)

7.2 Examples
We demonstrate our method using results for sample queries. Fig-
ure 11 showcases sample queries that yield potentially relevant
fonts as the top-1 result. The samples cover the query attributes
futuristic, confident, elegant, fun, and professional, together with ref-
erence fonts with strong profiles. The multimodal queries are able
to achieve the modifications mandated by the specified attributes
while retaining the visual aesthetics of the reference fonts. In an-
other example given in Figure 12, the second result appears to be
significantly different from the first and third results. Yet, all results
seem relevant to the query. This variety enables users to navigate
in different directions in their intended search space. The examples
from Figure 13 show that it is also possible to expand our method
to include multiple attributes. This is particularly useful when the
user does not have any particular reference font as a starting point
but instead simply starts from a neutral default one.

Limitations. As observed in the experiments from Section 6, in
some cases, users’ perception of similarity can diverge from the
embedding’s notion of similarity. The top query in Figure 14 shows
a case where an outlined reference font yields a first result that is
not an outlined font. Despite the similarity between the reference
font and the first result, user experiments are needed to assess to
what extent users would agree. Another issue is that for reference
fonts that already strongly incorporate the specified attribute, the
results may not seem as strong, as e.g., for the second query in
Figure 14. Thus, further research is necessary to evaluate how users

Figure 13: Multimodal query sample with two attributes
used to modify the reference font.

Figure 14: Multimodal query samples with top-2 results.

perceive the query results for reference fonts depending on how
strongly the reference already reflects the specified attribute (e.g.,
strongly reflects, weakly reflects, does not reflect it).

8 CONCLUSION
In this paper, we develop a cross-modal representation for fonts
and words, and use it to enable zero-shot attribute-based font re-
trieval as well as similarity-based font retrieval. Our experiments
provide insights on properties of cross-modal embeddings for fonts
and words. Tag-based retrieval requires an accurate representation
space that properly reflects contrasts between different attributes.
Accordingly, our full method based on semantic constraints and
top-𝑘 training data filtering shows improved results compared to
the unconstrained baseline.

We further show that font and attribute-based retrieval can be
combined by proposing a novel multimodal font searching strategy
that allows the user to specify a reference font together with the
changes they wish to solicit. This allows users to quickly locate
new fonts that may better satisfy their design requirements.

In terms of future work, one observation, discussed in Section 5,
is that for ambiguous words, the distribution of meanings may differ
between the typographical tags and the general word embeddings.
We focus mostly on semantic attributes in this study, rather than
typographic ones, and see the interaction between the context of
the two as a direction for future work.
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