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Abstract. Large-scale knowledge graphs such as those in the Linked Open Data cloud are typically stored as subject-
predicate-object triples. However, many facts about the world involve more than two entities. While n-ary relations
can be converted to triples in a number of ways, unfortunately, the structurally different choices made in different
knowledge sources significantly impede our ability to connect them. They also increase semantic heterogeneity,
making it impossible to query the data concisely and without prior knowledge of each individual source. This article
presents FrameBase, a wide-coverage knowledge base schema that uses linguistic frames to represent and query
n-ary relations from other knowledge bases, providing multiple levels of granularity connected via logical entailment.
Overall, this provides a means for semantic integration from heterogeneous sources under a single schema and opens
up possibilities to draw on natural language processing techniques for querying and data mining.

Keywords: knowledge representation, semantic web, n-ary relations, frames, reification, semantic integration

1. Introduction

Over the past few years, large-scale knowledge
bases (KBs) have grown to play an important role
on the Web. Increasing numbers of institutions pub-
lish their data using Semantic Web standards [2]
and Linked Open Data (LOD) principles, contribut-
ing to the LOD cloud. This data can be used for
a variety of purposes. For instance, commercial
search engines exploit these KBs to provide direct
answers to user queries, while IBM’s Watson ques-
tion answering system [21,34], which defeated hu-
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man champions of the Jeopardy! quiz show, used
them to find or to rule out answer candidates.

KBs of this sort are mostly based on simple state-
ments expressed as subject-predicate-object triples,
as defined by the RDF model [29]. Such triples
are convenient to process and can be visualized as
entity networks with labeled edges.

Whereas triple representations work straightfor-
wardly for relations involving two entities, many
interesting facts relate more than just two par-
ticipants – a problem that has gained renewed
attention in several recent papers [25,43] as well
as in the current W3C proposal to add roles to
schema.org [5]. For a birth event, for instance, one
may wish to capture not just the time but also the

1570-0844/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved



2

location and the parents. For an actress starring
in a movie, the name of the portrayed character
may be relevant. Such facts naturally correspond to
n-ary relations. In order to capture them as triples,
several different representation schemes have been
proposed.
Figure 1 shows some possibilities of expressing

that two entities John and Mary married in 1964.
These different modeling patterns are used across
different KBs in the LOD cloud, which will be
discussed in more detail later in Section 2.

a) The basic-triple pattern in Figure 1a is very
simple and just establishes pair-wise connec-
tions between the arguments of the n-ary rela-
tion. If one regards every triple as representing
an underlying n-ary relation with only two
arguments given, it could be said that this
pattern occurs in every KB in the LOD cloud.
It lacks the expressive power to connect more
than two arguments of the same n-ary relation.

b) The triple-reification1 pattern in Figure 1b is
used in the YAGO ontology [31] and attempts
to solve the above problem by creating an en-
tity representing a triple about which addi-
tional information can be expressed, but it in-
curs a significant overhead that is superlinear
to the number of elements in the relation, and
its semantics are also problematic.

c) The singleton-property pattern in Fig-
ure 1c [43] improves the pattern above, but
still carries some of the same problems.

d) The pattern in Figure 1d is an event-centric
pattern used frequently in specific parts of
many KBs (e.g. Freebase [4]), usually to rep-
resent public events by means of a reduced
ad-hoc vocabulary. It uses specific properties
connected to an event class. The event class
is often specific but sometimes may also be
general (since more specific information can
often be explicitly or implicitly inferred from
the specific roles).

1This kind of reification is different from the other kind
that is discussed in this paper, which is explained in Sec-
tion 2.1.2. Both kinds of reification have in common that
they consist of creating an entity for something that was
not represented explicitly by a single entity before. To avoid
confusion, we will refer to this kind of reification as triple-
reification, while the other kind – more related to the field
of linguistics – will be referred to as “reification” without
any qualifier.

e) The pattern in Figure 1e is similar to the pre-
vious one but uses a reduced set of generic
roles. It is found in some KBs and schemas
such as the Simple Event Model (SEM) On-
tology [70] and LODE (Linking Open Descrip-
tions of Events) [61].

f) The pattern in Figure 1f is based on “role
classes” that substitute for the regular object
of a triple, and to which additional properties
can be appended.

g) Other more ad-hoc solutions exist as well.2
One is to encode the value of the third,
fourth, etc. argument in the IRI of a prop-
erty connecting the first two, e.g. John
marriesMaryAtDate 1964. This reduces the
overhead of the patterns from Figures 1b
and 1c but at the cost of misusing the RDF
standard by creating ad-hoc semantics en-
coded within the IRIs. This would require ex-
tra processing and in the long run produce in-
compatibilities and defeat the purpose of RDF
of serving as a simple, homogeneous standard.

Table 1 provides examples of these different mod-
eling patterns in terms of the involved triples
given in an N-triples-like format. These correspond
to Figure 1, but the parts corresponding to Fig-
ures 1a, 1b, 1c, and 1f are restricted to the struc-
tures surrounding the triple isMarriedWith.

As the examples show, this sort of semantic het-
erogeneity leads to significant data integration chal-
lenges. One KB might use a simple binary prop-
erty between two entities, whereas another may
instead choose a more complex representation that
accommodates additional arguments (as will be
analyzed in Section 2.1). The representations can
easily be so at odds with each other that no partic-
ular mapping between entities could bridge the dif-
ferences. There are entities at each side that have
no counterpart at the other. This leads to several
challenging problems:

1. When linking data, there are currently no stan-
dard mechanisms to connect KBs with differ-
ent modeling choices. Predicates exist to link
equivalent classes, instances, or properties, but
not for connecting the different patterns aris-
ing from the different modelling choices, as

2http://www.w3.org/wiki/TaskForces/
CommunityProjects/LinkingOpenData/DataSets/
CKANmetainformation
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(a) Basic-triple pattern (explained in Section 2.1.1)
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(b) Triple-reification pattern (explained in Section 2.1.2)
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(c) Singleton-property pattern (explained in Section 2.1.3)
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(d) Specific-Role-Neo-Davidsonian pattern (explained in
Section 2.1.5)

John Mary
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(e) General-Role-Neo-Davidsonian pattern (explained in
Section 2.1.5)
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(f) Role-class pattern (explained in Section 2.1.4)

Figure 1. The same information represented using different modelling patterns used in different KBs in the LOD. The property
“same event” is meant to link entities that are not logically equivalent but represent the same underlying event.
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Table 1
Triple Representations of n-ary Relations

Basic-triple pattern

John isMarriedWith Mary .

Triple-reification pattern

John isMarriedWith Mary
s type Statement
s subject John
s predicate isMarriedWith
s object Mary
s time 1964

Singleton-property pattern

p subPropertyOf isMarriedWith
John p Mary
p time 1964

Specific-Role-Neo-Davidsonian

e type Marriage
e groom John
e bride Mary
e time 1964

General-Role-Neo-Davidsonian

e type Marriage
e participant John
e participant Mary
e time 1964

Role-class pattern

John isMarriedWith x
x isMarriedWith Mary
x type Role
x date 1964

the ones introduced above. For instance, the
entities of type rdf:Statement in Figure 1b
cannot be linked with owl:sameAs to the en-
tities of type rdf:Property in Figure 1c or
to the entity of type :Marriage in Figure 1d.
Existing work on automatic ontology and KB
alignment [3] focuses only on finding aliases.

2. When using structured queries, the query
must be built in a way that fits the particu-
lar modeling choices made for the respective
KB. Otherwise, the recall may be as low as
zero [52]. Even worse, for the case of a set of
different KBs instead of a single coherent KB,
there is no simple query (as could be formu-
lated on a single given schema) that can have
a high recall across all KBs.

3. Similarly to the previous point, when natural
language interfaces to KBs are queried, state-
of-the-art systems typically attempt to map
verbs and predicate phrases to RDF predi-
cates [71]. This approach, however, cannot be
applied when the KB fails to provide a com-
patible binary relation.

In this article, we describe how these problems are
addressed by FrameBase, a broad-coverage multi-
layered schema that can represent a wide range
of knowledge and therefore is a suitable candi-
date to homogeneously integrate other KBs. Fig-
ure 2 shows an example of how FrameBase rep-
resents knowledge. It combines the ability to ex-
press n-ary relations unambiguously and efficiently
from the “Specific-Role-Neo-Davidsonian” pattern
in Figure 1d with the abstraction of the “General-
Role-Neo-Davidsonian” pattern in Figure 1e, by
connecting roles, together with a wide-coverage
vocabulary of events, in a comprehensive hierarchy.
At the same time, it also provides the conciseness
from the “Basic-triple” pattern in Figure 1a.
The latter is achieved by offering a two-layered

structure with a mechanism to convert back and
forth between the Neo-Davidsonian representation
and one based on direct binary predicates, using a
vocabulary of automatically generated binary prop-
erties exploiting the ties to resources in linguistics.
These are more concise and can be used when only
two arguments are relevant, either in the KB or in
a query.
This article builds upon previously published

work on FrameBase [53,54] and extends it by:

– Including an expanded and updated analysis
of the state of the art.

– Describing the addition of miniframes to the
FrameBase schema.

– Linking with external Linked Open Data re-
sources such as Lexvo.org [13,14] and the
Princeton RDF WordNet [41].

– Creating 10,270 new Direct Binary Predicates
and Reification–Dereification rules based on
nouns, for which the head verbs have been
extracted with a novel method.

– Adding linguistically rich annotations to all
Direct Binary Predicates using the Lemon
model [40].

– Incorporating, in Section 6, results from ad-
ditional work [54,55,56] on the classification
and generation of integration rules.
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John MaryisMarriedWith

1964

isMarriedAtDateisMarriedAtDate

marriage

rdf:type

Partner 1

Time

Partner 2

to marry

wedding

Forming Relationships

rdfs:subClassOf

frame instance

Figure 2. Knowledge represented the examples in Figure 1, represented under the FrameBase model, which combines
expressiveness with conciseness by combining different representation layers.

– Including new illustrations, an updated struc-
ture, and a more in-depth analysis of several
aspects of FrameBase.

This paper is structured as follows. Section 2
reviews related work and conducts a more thor-
ough analysis of existing approaches for modeling
n-ary relations and their space efficiency. Then,
an overview of FrameBase is given in Section 3.
Section 4 explains how the FrameBase schema is
constructed, including rules to convert between
different levels of granularity and expressiveness.
Section 5 provides an evaluation of the quality of
the FrameBase schema. Section 6 presents a typol-
ogy and examples of integration rules used to cap-
ture knowledge from external KBs into the Frame-
Base schema, and existing methods to automati-
cally create the simplest kinds of rules. Section 7
discusses challenges regarding the creation of more
complex integration rules, and possible ways to

address them. Section 8 provides a conclusion and
outlines other potential lines of future work.

2. State of the Art

In this section, we review prior work in this area.
In particular, Section 2.1 provides a deeper analysis
of the patterns introduced in Figure 1. Section 2.2
discusses previous work on integrating knowledge.
Section 2.3 introduces FrameNet, which serves as
the backbone of our schema, as well as other related
work based on it.

2.1. Modeling Patterns for N-ary Relations

Different approaches or patterns for modeling
n-ary relations exist, as summarized in Figure 1
and Table 1. In Table 2, we provide a novel analysis
of their general space efficiency, which has conse-
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Table 2
Triple count associated to different approaches or patterns
for modeling n-ary relations.

Pattern Struc. Prop. EL All Reif. Reasoning Dereif. Reasoning

Triple-Reification 4k (n− 2)k (k − 1) k
2 (n + 2)k 4k Def. clauses k Def. clauses

Role-class 3k (n− 2)k (k − 1) k
2 (n + 1)k 3k Def. clauses k Def. clauses

Singleton-property 2k (n− 2)k (k − 1) k
2 nk 2k Def. clauses 1 Def. clause / RDFS

*-Neo-Davidsonian 1 n 0 n+k +1 3k Def. clauses k Def. clauses

quences with regards to their applicability for large-
scale KBs. Each row considers the space efficiency
of a specific modeling pattern for representing an
event with n participants, where k ≤ n(n−1)

2 is the
number of pairs of participants with relationships
that are significant enough to be linked by direct
binary relations (we do not count inverse properties
because these can easily be accounted for by using
owl:inverseOf). The columns reflect particular
space complexity functions for the patterns.

– Struc. (Structure) indicates the number of
triples that are part of the core structure
of the modeling approaches. For instance,
for “Triple-Reification”, the value 4k is ob-
tained from having to represent, for each of
the k relevant pairs, 4 different triples (using
rdf:subject, rdf:predicate, rdf:object
and rdf:Statement). The formulae for the
other patterns are similar, just with different
numbers of triples required for each relevant
pair. The Neo-Davidsonian pattern is an ex-
ception, since the core structure here is just
a single triple (assigning a type to the event
instance), so the number of triples remains
constant with respect to the number of rel-
evant pairs. “Structure” excludes the direct
binary relations for the relevant pairs, whose
number is always k.

– Prop. (Properties) indicates the number of
triples whose predicates are properties of the
underlying n-ary relation. For patterns other
than the Neo-Davidsonian ones, each entity
associated to one of the triples between the
k relevant pairs is the subject for the n − 2
properties that are not involved in that rele-
vant pair. These triples are necessary to avoid
ambiguity only if the “Entity Links” triples
(explained next) are not included.

– EL (Entity Links) indicates the number of
triples that are needed if one wishes to connect

entities that represent the same event (aliases).
For a Neo-Davidsonian representation, this
is zero, because it does not produce intrinsic
aliases for an event. In Figure 1, these are the
triples with the predicate “same event”. They
are only necessary to avoid ambiguity if the
“Properties” triples (explained before) are not
included.

– All indicates the total number of triples that
can be materialized, summing up the “Struc-
ture” and “Properties” triples, and the k direct
binary relations. The “Linking event” triples
are omitted from the sum because the “Prop-
erties” triples already ensure that the proper-
ties of the n-ary relations are unambiguously
connected. To avoid ambiguity, either “Prop-
erties” or “Linking event” triples can be used,
and it is not necessary to include both.

– Reif. Reasoning (Reification Reasoning) indi-
cates what is required for inference to obtain
the representation in “All triples” or “Core”
from the k direct binary relations. Definite
clauses are a kind of rules that can be ex-
pressed as a disjunction of logical atoms with
only one negated, which is the consequent
when it is written as an implication (rule).
In this context, the atoms are of the form
triple(subject,predicate,object). In Section 4.4,
we will describe these rules for the case of
FrameBase in more detail.

– Dereif. Reasoning (Dereification Reasoning)
indicates what is necessary for inference to
obtain the k direct binary relations or the rep-
resentation in “All triples” from the represen-
tation in “Core”.

Figure 1 can be regarded as a specific case of Ta-
ble 2 with n = k = 3, though the latter does
not include the “Basic-triple pattern”, as it cannot
represent n-ary relations unambiguously. Addition-
ally, for the sake of simplicity and ease of repre-
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sentation, different groups of triples are included
or emitted. Namely, Figures 1b and 1c represent
“Struc.” and “EL” triples, as well as the triples for
the relevant pairs. Figure 1f represents “Struc.”,
“EL”, and “Prop.” triples, but not the triples for the
relevant pairs. Figures 1d and 1e represent “Struc.”
and “Prop.” triples, and again not the triples for
the relevant pairs. This is because they are not an
inherent part of the model.

Similarly, Table 1 can be seen as a specific case
of Table 2 with n = 3, k = 1.
Each pattern will be discussed in detail in the

following subsections.

2.1.1. Basic-Triple Pattern
A common way to represent n-ary facts is to

simply decompose them directly into binary re-
lations between two participants [8]. However, in
doing so, important information may be lost. For
instance, given three triples sharing the subject,
one of these with property isMarriedOnDate and
two with isMarriedTo, we cannot be sure which
marriage the given time span corresponds to. This
is shown in the example in Figure 1a.

2.1.2. Triple-Reification Pattern
The RDF standard includes a method for per-

forming reification[29] of triples, which introduces
a new Internationalized Resource Identifier (IRI)
for a statement and then describes the original
RDF triple using three new triples with subject,
predicate, and object properties. Subsequently,
arbitrary properties of the statement can be cap-
tured by adding further triples about it.

Triple-reification is used in the different versions
of YAGO [31,63,65] to attach additional informa-
tion to the event represented by the original RDF
triple (evoked by its property). It has also been
proposed in the W3C WebSchema drafts [5]. This
pattern is exemplified in Figure 1b (in YAGO,
the marry relation is called isMarriedTo, but this
does not change the semantics). Using the triple-
reification pattern in this manner has the advan-
tage that both the original triple as well as the
triple-reified triple can be present in the KB and
queries that do not require the additional infor-
mation can still use the original binary relation
directly. However, this also has several drawbacks:

– Formally, the event represented by a triple and
the triple as a statement are different entities
with different properties. For instance, an in-

stitution may endorse the triple as a statement
without endorsing the marriage. Using triple-
reification, both are represented by the same
RDF resource identifier, which conceptually is
meant to be unambiguous. This is a potential
source of confusion and inconsistency.

– The number of triples increases by a factor of
4. For each triple (S P O), one has to add (T
a rdf:Statement), (T rdf:subject S), (T
rdf:predicate P), and (T rdf:object O).
These do not add any new information them-
selves but are merely a prerequisite for being
able to extend the original binary relation to
an n-ary relation by subsequently adding more
triples with T as subject.

– The advantage of being able to include the
original non-triple-reified triple only applies
to the primary binary relation, and not to
the other n(n−1)

2 − 1 ones that can be formed
(not counting inverses). Some of these may
be rare or irrelevant, but others may be im-
portant and are indeed used in YAGO (e.g.
yago:bornAtPlace, yago:bornOnDate).

– The choice of the primary pair of entities and
their binary relation (John and Mary in Fig-
ure 1b) is arbitrary, and a third party willing
to query the KB cannot replicate the choice
independently. If their choice is different, they
will not obtain any results. A possible solution,
which is actually implemented in YAGO, is to
include the triples for the other pairs and reify
them, too, but this adds yet another factor of
overhead, besides data redundancy that would
complicate updates.

If the triplestore implementation makes use of
quads3, the 4-fold overhead can be avoided (though
the underlying storage needs a new column), but
the other disadvantages still remain. Quad-based
singleton named graphs [29] could be used instead
of triple-reification, the underlying problems being
the same.

2.1.3. Singleton-Property Pattern
The “singleton property” approach [43] aims to

solve some of the issues with triple-reification by in-
stead declaring a subproperty of the original prop-
erty in the primary pair, and using this subprop-

3http://www.w3.org/TR/n-quads/
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erty as the subject for the other arguments of the
n-ary relation. This is shown in Figure 1c.

While the approach enables us to use RDFS rea-
soning to obtain the triple with the parent prop-
erty that relates two of the participants, and also
reduces the overhead of triple-reification, it still
suffers from the problems mentioned above related
to the existence of a primary pair. For example, the
non-triple-reified binary relationships for the other
pairs cannot be inferred from that subproperty
using RDFS.

2.1.4. Role-Class Pattern
Schema.org is an effort sponsored by Google,

Yahoo, and Microsoft to establish common stan-
dards for semantic markup in Web pages. It offers
a method to qualify a binary predicate by adding
additional information to it [32], which in practice
is equivalent to representing the n-ary relation aris-
ing from adding arguments to the binary relation
underlying the binary predicate. This works by sub-
stituting the object of the binary predicate with a
fresh instance of a class Role (or a subclass thereof
with its own properties), and appending to this role
instance the original object by means of the same
binary predicate, alongside other properties such as
time, instrument, etc. In order to avoid confusion, it
is relevant to note that Schema.org’s use of the term
“role” differs from its standard use in linguistics,
which are qualifying properties such as agent and
patient[23]. This definition has also been adopted
in ontologies, for instance CaseRole in the SUMO
ontology [59]. An example of the role-class pat-
tern is shown in Figure 1f. Another example, orig-
inally used by Schema.org contributors, uses the
triple :SanFrancisco49ers schemaorg:athlete
:JoeMontana, which would be converted to:

:SanFrancisco49ers schemaorg:athlete _:x
_:x a schemaorg:Role
_:x schemaorg:athlete :JoeMontana
_:x schemaorg:startDate "1979"

This transformation offers a certain level of com-
patibility between the simple pattern with the di-
rect binary predicate and the complex pattern, be-
cause the binary predicate is preserved in the com-
plex pattern, with the same subject. However, the
object changes, and therefore the simple pattern
as such is not truly preserved after the transforma-
tion. Besides, the definition or original contract of
the direct binary predicate is broken in the com-

plex pattern. For example, schemaorg:athlete
has SportsTeam and Person as domain and range
respectively, and the semantics is that the object is
a person that plays in the team denoted by the sub-
ject. However, none of the two usages in the com-
plex pattern follow this: one has SportsTeam and
Role as domain and range, and the other has Role
and Person. Using RDFS-like inference one would
infer that the role instance is also a participant,
and other participants would be attached.
An example of how this conflation can lead to

problems can be fully appreciated with intransi-
tive predicates. For instance, if the predicate is
somekb:fatherOf, then people’s children will be-
come their grandchildren after the transformation.
Furthermore, the complex pattern produced by

this method, given a direct binary predicate be-
tween two entities and a further qualifying value
(like time in the example), is not equivalent to the
one produced by another binary predicate between
one of these entities and the qualifying value. This
produces a similar effect of redundancy as in the
method using triple-reification.

2.1.5. Neo-Davidsonian Pattern
Another approach, and the one that FrameBase

adopts, is to make use of Neo-Davidsonian repre-
sentations [33, p. 600f.]. This means that we first
define an entity that represents the event or sit-
uation (also referred to as a frame) underlying
the n-ary relation. Then, this entity is connected
to each of the entities filling the n arguments by
means of properties describing the respective se-
mantic roles [25,44] associated with each argument
position.

The process of converting from the binary repre-
sentation to the Neo-Davidsonian one is called reifi-
cation, but this is different from triple-reification
discussed above. In triple-reification, an entity is
defined that stands for a whole triple so that ad-
ditional triples can be used to describe the reified
triple as a unit that represents a statement. How-
ever, in the context of event semantics, reification
is used to denote the process by which an entity is
defined that refers to the event, process, situation,
or more generally, frame, evoked by a property or
binary relation. Having done this, additional infor-
mation about it can then easily be added. Both
kinds have in common that a new entity is defined
to refer to something that before was not explicitly
represented by an entity in the KB, but in one case
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it is an RDF statement, while in the other it is an
event.
Advantages. Table 2 compares the Neo-

Davidsonian approach to the alternatives. These
require a lot more triples when several direct binary
relations need to be included. In the worst case,
k = n(n−1)

2 , despite discounting inverse relations,
but even if not all of these relations are relevant,
connecting all agents and possibly patients to all
other elements would be relevant, which would
easily satisfy k > n.
Semantic Heterogeneity. Even when using the

Neo-Davidsonian approach, there are different ways
to do so, corresponding to different levels of granu-
larity for the events and the semantic roles: from a
very small set of abstract generic ones [61] to more
specific ones [4].
The Simple Event Model (SEM) Ontology [70]

uses the general-role Neo-Davidsonian pattern in
Figure 1e. It defines four very general entities,
Event, Actor, Place, and Time. It also establishes
a framework for creating more specific ones by ex-
tending these, but it does not provide these ex-
tensions, nor ways to integrate existing KBs in
a way that would solve the problem of semantic
heterogeneity. Similarly, LODE (Linking Open De-
scriptions of Events) [61] specifies only very general
concepts such as the four just mentioned.
Freebase [4] was built both by tapping on ex-

isting structured sources and via collaborative
editing. Although it uses its own formalisms,
there are official and third-party translations to
RDF. Freebase makes use of mediators (also
called compound value types, CVTs) as a way to
merge multiple values into a single value, simi-
lar to a struct datatype in C. An example of
a CVT is /people/marriage, which has outgo-
ing properties such as /people/marriage/spouse,
/people/marriage/from, /people/marriage/to,
and /people/marriage/type_of_union. There
are around 1,870 CVTs in Freebase (1,036 with
more than one instance) and around 14 million
composite value instances. These CVTs do not rep-
resent frames or events per se, but are regarded
as complex data types. Some CVTs, for instance,
connect a number and a unit. Still, in terms of
their structure, they correspond to the specific-role
Neo-Davidsonian pattern in Figure 1d. However,
Freebase places a number of restrictions on CVTs.
For instance, CVTs cannot be nested, and thus, if
a CVT involves a monetary value, it cannot re-use

the existing Dated Money Value CVT, but needs
to include separate entries for the amount and cur-
rency. Also, there is no hierarchy or network-like
organization, and thus Freebase does not capture
any particular relationship between similar CVTs
such as the film performance and TV guest role
CVTs.

2.2. Knowledge Integration

Connecting and integrating different knowledge
sources is a long-standing problem. For KBs,
there has been substantial work on ontology align-
ment [17] to identify matching classes from differ-
ent sources, and in some cases also instances and
properties [39,42,64].
However, relatively little work has considered

scenarios in which the same type of ontological
knowledge is modeled in different ways, as in
the different modeling patterns illustrated in
Figure 1 and explained in Section 2.1. In these
cases, alignment by means of binary properties
such as equivalence or subsumption is no longer
sufficient because an entity in a KB may not
have a direct counterpart in another KB. For
instance, neither any of the properties in Figure 1a,
nor the statement instance in Figure 1b, the
subproperty in Figure 1c, nor the event instance
in Figure 1d can be connected by owl:sameAs,
owl:equivalentClass, rdfs:subClassOf,
rdfs:subPropertyOf, owl:equivalentProperty,
skos:exactMatch, skos:closeMatch, or any
other binary relation.
The EDOAL (Expressive and Declarative On-

tology Alignment Language) format [11] has been
proposed to express complex relationships between
properties. It defines a way to describe complex
correspondences but it does not address how to
create them. Similarly, complex correspondence
patterns between ontologies have been described
and classified in an ontology [60]. However, this
approach does not provide any method to cre-
ate the correspondence patterns, neither fully nor
semi-automatically. The iMAP tool [15] searches a
space of possible complex relationships between the
values of entries in two KBs, e.g., room-price =
room-rate * (1 + tax-rate), but these are lim-
ited to specific types of attribute combinations.
The S-Match tool [27] makes use of formal reason-
ing to prove possible matches between ontology
classes, involving union and intersection operators,
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but it does not address complex matching of prop-
erties beyond this. The work from Ritze et al. [51]
uses a rule-based approach to detect specific kinds
of complex alignment patterns between entries in
small ontologies.

Unlike previous work, the approach presented in
this paper does not focus on matching pairs of en-
tities but provides techniques to match knowledge
that can also be expressed with complex patterns
involving multiple entities at one side. However,
these techniques can be combined with the existing
work on creating the one-to-one mappings.

2.3. FrameNet

FrameNet [22,58] is a well-known resource in
natural language processing (NLP) that defines
over 1,000 frames, which represent abstract con-
cepts that encompass situations, events, or pro-
cesses. These are evoked by certain words, called
Lexical Units (LUs), which can be any part of
speech: nouns, verbs, adjectives, etc. For example,
the verb to buy and the noun acquisition can evoke
(depending on the intended sense) a “commercial
transaction” frame. Frames have associated partic-
ipants (called Frame Elements or FEs for short),
For instance, the “commercial transaction” frame
has FEs for the seller, the buyer, the goods, and
so on.

FrameNet includes a corpus of text that has been
annotated with frames and FEs. Each annotation
consists of a frame and an LU that appears (pos-
sibly inflected) in a piece of text, and some FEs
whose values also appear in the text. This informa-
tion can be used for training semantic role labelling
(SRL) systems, also known as semantic parsers, to
extract semantics or meaning from arbitrary text.

There has been previous work on producing con-
versions of FrameNet to RDF as a resource [45] in-
stead of a schema. Also, previous work [24] has pro-
posed a framework, in the form of a meta-schema,
for using frames as units of meaning to address
the semantic heterogeneity problem. The frame-
work serves as a model that can be instantiated to
generate schemas from FrameNet, but it does not
provide a specific one.
FRED [49] builds semantic representations of

text, based on Discourse Representation Theory
and with links to VerbNet [46], FrameNet [22],
DOLCE Ultra-Lite [48], and other knowledge
sources. Our work, in contrast, does not focus on

creating representations from text but rather on
converting all the knowledge in such knowledge
sources to a unified schema.

3. System Overview

As pointed out in the previous section, there are
a number of different patterns used to represent
n-ary relations in KBs.

This paper describes the construction of Frame-
Base, an extensible KB schema that allows for rep-
resenting a wide range of knowledge, aiming at
an optimal balance between the existing model-
ing patterns. The paper also discusses methods to
integrate knowledge from external KBs.
FrameBase consists of two layers. The more ex-

pressive but also more verbose layer of the Frame-
Base schema is referred to as the reified layer. It
consists of classes, representing frames, which can
be events, situations, processes of a very general
kind. It also contains frame-element properties that
specify qualities about frame instances: agents par-
ticipating in different ways, time, place, cause, con-
sequence, instrument, etc. The frames are orga-
nized in a hierarchy of macroframes, miniframes,
and synset- and LU-microframes, ordered here
from more general to more specific kinds of frames.
Synsets and LUs (Lexical Units) are concepts im-
ported from WordNet [18] and FrameNet [1], re-
spectively, which are both resources from computa-
tional linguistics. FrameNet constitutes the back-
bone of FrameBase and is a compilation of such
frames and FEs to annotate the semantics of nat-
ural language. WordNet is a computational lex-
icon that includes word senses grouped by syn-
onymy and other semantic relations. Both synsets
and LUs are closely related to sense-disambiguated
words and therefore they are used to produce
the most specific frames, whereas miniframes and
macroframes represent groups of near-synonymous
or related concepts.
The less verbose but also less expressive layer

of the FrameBase schema is the dereified layer,
which consists of direct binary predicates (DBPs).
These are properties for simple binary relationships
between elements of a given frame. Rather than
having to query such relationships via a common
frame instance, this layer enables direct querying
of these binary relationships.
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Data from external KBs in the LOD cloud can be
imported using integration rules, which can create
FrameBase instance data from the instance data
of the external KBs. This paper also describes the
creation of these rules in manual, semi-automatic,
and automatic ways, exploiting the linguistic as-
pects of FrameBase inherited from FrameNet. The
results for automatic and semi-automatic meth-
ods are evaluated empirically. We also provide ex-
amples of how the resulting FrameBase instance
data can be queried. Figure 3 provides a general
overview of the dataflow in the FrameBase system.

3.1. FrameNet-based Representation

The use of FrameNet as the backbone of Frame-
Base is motivated by the following considerations.

– FrameNet has long been used to describe the
semantics of general natural language. It thus
provides a relatively large and growing inven-
tory of frames and roles, with a coverage of
different domains. The average number of FEs
per frame is 9.45.

– FrameNet comes with a large collection of
English sentences annotated with frame and
frame-element labels, which enables semantic
role labeling [26]. This strong connection to
natural language facilitates question answering
[38] and related tasks.

– While FrameNet’s lexicon and annotations
cover the English language, its frame inventory
is abstract enough to be adopted for languages
as different as Spanish and Japanese [62].
This also makes it more suitable as a ba-
sis for language-independent knowledge repre-
sentation than more language-specific syntax-
oriented SRL resources such as PropBank [35],
although being more abstract can make the
SRL task more challenging.

– In terms of what is expressed as a frame and
what is expressed as a role or frame element,
FrameNet provides a reasonable level of granu-
larity for the phenomena that humans care to
describe. From a theoretical perspective, there
is no universally appropriate single level of
reification. Any frame element might itself be
reified, and any two elements of a frame could
be connected directly by a predicate. Using
FrameNet strikes a well-motivated balance, at
a point that is granular enough to constitute

a model for natural language semantics. How-
ever, as Section 4.4 will explain in more detail,
a second level of representation is provided in
FrameBase, which is based on the direct bi-
nary predicates between frame elements, and
therefore less expressive but more concise.

4. FrameBase Schema Creation

The FrameBase schema consists of a reified layer
and a dereified layer, connected by inference rules.
The reified layer provides a comprehensive hier-
archy of frames and FEs, with lexical labels in
English. The dereified layer provides direct binary
predicates that can be used between the values of
the FEs. The creation of the schema is carried out
in the following steps.

a) FrameNet–WordNet Mapping. First, a high-
precision mapping is created between FrameNet
and another well-known lexical resource called
WordNet [18], which will be used to enrich the
lexical coverage and relations of the FrameBase
schema. This is described in Section 4.1.

b) Hierarchy Construction. FrameNet, WordNet,
and their mapping are used to create a hierarchy
of frames and FEs that has very wide coverage
and is also extensible. This involves creating
general macroframes, extracted from FrameNet,
as well as specific LU-microframes and
synset-microframes extracted from FrameNet
and WordNet, respectively. However, these
microframes are too fine-grained, with separate
entries for synonyms and near-synonyms.
For instance, there are distinct LUs for get
vs. obtain. This is a problem for knowledge
representation because it increases the sparsity
of data. At the same time, some macroframes
are very coarse-grained, as mentioned above, so
direct inheritance from a common macroframe
cannot be used as a criterion for considering
LU-microframes semantically equivalent. For
instance, various kinship relationships such
as mother, sister-in-law, etc. are lumped
together under the same macroframe. This
wide range of LUs may stand in various
lexical-semantic relationships without these
being indicated, including synonymy, antonymy,
or nominalization. The only characteristic they
have in common is that, by definition, they
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macroframes

microframes

miniframes

direct binary predicates

reification rules dereification rules

queries
under
single
schema

source 1

source N

source 2

...

integration rules

Figure 3. Overview of the structure of the FrameBase system.

evoke a similar kind of situation. Therefore,
neither the fine-grained nor the coarse-grained
levels are ideal for knowledge representation
purposes. In FrameBase, this is addressed by
providing a novel intermediate level composed of
miniframes that group together LU-microframes
and synset-microframes that have equivalent or
near-equivalent meanings, solving the problem
described above. The children of each miniframe
are connected in a clique with the property
:isSimilarTo. The creation of the hierarchy
is described in Section 4.2. An example of
two resulting sibling miniframes with all their
members can be appreciated in Figure 4.
Without the extended hierarchy, it would not
be possible to determine that two instances of
:frame-Quitting_a_place-withdraw.v and
:frame-Quitting_a_place-withdrawal.n
are equivalent (and optionally, they
can be converted to the same type
:frame-Quitting_a_place-cluster-retreat.v
if desired, with external logic or by adding
the triple :isSimilarTo rdfs:subPropertyOf
owl:sameClassAs in an OWL-enabled triple-
store).

c) Automatic Reification–Dereification Mecha-
nism. Reification–dereification (ReDer) rules are
created, in the form of definite clauses that allow
a KB to be stored or queried independently of
whether reified frames or dereified direct binary
predicates are used. This mechanism may also
be used to reduce overhead in the KB. The struc-
ture, implementation, and creation of ReDer
rules are described in Section 4.4.

4.1. FrameNet–WordNet Mapping

While FrameNet [22,58] is the largest high-
quality inventory of semantic frame descriptions
and their participants, WordNet [18] is the most
well-known resource capturing meanings of words
in a lexical network, covering for example nouns
and named entities missing in FrameNet. WordNet,
for instance, serves as the backbone of YAGO’s
ontology. This section proposes a novel way of map-
ping the two resources, which later enables us to
integrate both of them into FrameBase’s schema.
WordNet contains synsets, which are sets of

sense-disambiguated synonymous words with a
given part of speech (POS), such as noun or verb.
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..defect.v ..defection.n ..desert.v ..desertion.n

..desertion_n_00055315 ..defect_v_02584097

..abandon_v_00614057

..deserter_n_10007109

..deserter_n_10006842

..retreat.v ..withdraw.v ..withdrawal.n

..receding_n_00057486

..pullback_n_00056688

..withdraw_v_01994442

..withdrawal_n_00053913

:frame-Quitting_a_place

deserter
turncoat
apostate
ratter
recreant
renegade

desertion
abandonment
defection

deserter
defector

defect
desert

abandon
desert
desolate
forsake

pullback
receding
recession

withdraw
retire
retreat

draw back
pull back
move back
recede
pull away

withdrawal

:frame-Quitting_a_place-cluster-defect.v

:frame-Quitting_a_place-cluster-retreat.v

rdfs:subClassOf

rdfs:labelrdfs:label

Clique of elements
connected with
framebase:similarTo

macroframe

miniframe

LU microframe

synset microframe

labels

Figure 4. Example of some microframes and labels under the general frame class :frame-Quitting_a_place. The initial part
of the names of classes is common and has been omitted.
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:frame-Personal_relationship-marital.a
:frame-Personal_relationship-married.a
:frame-Personal_relationship-wn_marital_a_02852920
:frame-Personal_relationship-marriage.n
:frame-Personal_relationship-wn_marriage_n_13963970
:frame-Personal_relationship-wn_date_n_08385009
:frame-Personal_relationship-engagement.n
:frame-Personal_relationship-date.v
:frame-Personal_relationship-wn_go_steady_v_02486232
:frame-Personal_relationship-wn_widow_v_00360337
:frame-Personal_relationship-widow.v
:frame-Personal_relationship-wn_widow_n_10780284
:frame-Personal_relationship-widow.n

...-wn_cohabit_v_02651193

...-cohabitation.n

...-wn_cohabitation_n_01054876

...-cohabit.v

...-buddy.n

...-wn_buddy_n_09877951

...-chum.n

...-pal.n

...-wn_chummy_a_00452114

...-wn_pal_v_02588871

...-wn_chummy_a_01075524

...-wn_friend_n_10112591

...-wn_friendship_n_13931145

...-friend.n

...-friendship.n

Figure 5. Example of six clusters of LU- and synset-microframes under the macroframe :frame–Personal_relationship
(which is also how the IRIs of the child microframes start, but this is omitted in the second column). The connection of
derivationally related words evoking nearly equivalent situations or relations (in general, frames) can be appreciated in all
of them. For instance, LU-microframes friend and friendship are connected to the homonymous synset-microframes by the
FrameNet-WordNet mapping, and the two synset-microframes are connected by the WordNet relation “derivationally related
from”.

FrameNet contains lexical units (LUs), which are
also POS-annotated words associated with frames.
Because of the semantics of the containing frame,
LUs are also disambiguated to a certain extent,
though not with the same granularity as in Word-
Net (for instance, WordNet has different senses for
the verb to assert corresponding to stating some-
thing categorically and to declaring or affirming
something solemnly as true; this is a nuanced dif-
ference that is conflated under a single LU in the
frame Statement). The objective at hand is to pro-
duce an alignment of synsets and LUs with the
same meaning, which can be later used to enrich
FrameBase’s FrameNet-based schema with rela-
tions and annotations from WordNet.
More specifically, the objective is to map each

LU to exactly one synset. While there are some
LUs that could be mapped to more than one synset,
as a general rule the restriction to a single one
favors precision, which is desirable for the purpose
of obtaining a clean knowledge base (even at the
cost of some recall). The only cases where this
model would be detrimental to precision are those
for which LUs do not have any associated synset,
but these are few and most can easily be avoided
by omitting LUs with parts of speech not covered
in WordNet, such as prepositions.
This choice allows for modeling the mapping

as a function S(l|a, b) from LUs to synsets as in
Eq. (1). In this definition, Sl stands for the set
of synsets with the same lexical label and part-of-
speech tag as the LU l, µL and µG are the lexical

and gloss (definition) overlap, respectively, f yields
the corpus frequency of the synset, and a and b
are parameters for a linear combination (the third
parameter can be omitted because of the argmax
function).

S(l|a, b) = argmax
s∈Sl

µL(l, s)+a·µG(l, s)+b·f(s) (1)

The lexical overlap µL of an LU l and a synset
s is the size of the intersection between the POS-
annotated words from the LUs in the same frame
as l and the POS-annotated words in s and its
neighborhood. The neighborhood is defined as the
synsets interconnected by a selection of lexical
and semantic relations (called “semantic point-
ers” in WordNet) such as “See also”, “Similar to”,
“Antonym”, “Attribute” and “Derivationally re-
lated”. Without this expansion, sparsity is too high.
It also helps matching the sets with those generated
for the LUs, which, due to the different semantics
of frames and synsets, may already include these
related words.

The gloss overlap µG is the size of the intersection
between the set of words in the definition of the LU
and the gloss of the synset. The Stanford CoreNLP
library [67] is used to clean XML tags, tokenize,
POS-label, and lemmatize the text, and all words
except nouns and verbs are filtered out.
Parameters a and b are trained with a greedy

search starting at several randomized seeds, obtain-
ing optimal values a = 5, b = 0.13.
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4.2. Hierarchy Construction

In FrameBase, frames are modeled as classes
whose instances are specific events or situations.
The frame elements of each frame are properties
whose domain is that frame. The class hierarchy
of frames is created as follows.

1. General Frames: These frames are obtained
from the original FrameNet frames and are re-
ferred to in FrameBase as macroframes, be-
cause they correspond to general concepts.
They are connected to each other via the rela-
tions :inheritsFrom and :isPerspectiveOf4,
which are obtained from FrameNet’s frame inher-
itance and perspectivization relations between
frames. Both relations are made subproperties
of rdfs:subClassOf, because every subframe
or perspectivized frame is also an instance of
the parent or general frame, and inheritance
between frame element properties (belonging
to frames connected by inheritance) is modeled
with rdfs:subPropertyOf. Perspectivization is
similar to but still somewhat different from in-
heritance. It is a sort of specialization relation
that captures a particular perspective of a sit-
uation or event associated with a frame. For
instance, in the resulting FrameBase schema,
the frame :frame-Transfer is perspectivized
by :frame-Giving, which reflects a perspective
centered around the frame element Donor be-
ing the agent. This is reflected by the fact that
:frame-Giving, at the same time, inherits from
:frame-Intentionally_act, and its FE prop-
erty :fe-Giving-Donor is a subproperty of the
FE property :fe-Intentionally_act-Agent.
On the contrary, the frame element property
:fe-Transfer-Donor does not inherit from any
agentive frame element property. Additionally,
a top frame is declared for the hierarchy. Se-
mantic types are sometimes provided as ranges
in FrameNet, but their current coverage is lim-
ited, and they have therefore been left out of
FrameBase.
Another example covering both inheri-
tance and perspectivization is the follow-
ing. Using RDFS inference, an instance
of :frame-Commerce_sell with a certain
property:fe-Commerce_sell-Buyer B is also

4We use http://framebase.org/ns as default prefix.

an instance of :frame-Giving, and B is its
:fe-Giving-Recipient, because the former
frame inherits from the latter. Likewise,
it is also an instance of :frame-Transfer
and B is the :fe-Transfer-Recipient, be-
cause :frame-Giving is a perspective on
:frame-Transfer.

2. Leaf Nodes: Since FrameNet’s original frame
inventory is coarse-grained and different LUs
like construction and to glue evoke the same
frame, more specific frames associated with
particular LUs are employed. In other words,
every LU is treated as evoking its own separate
fine-grained frame, an LU-microframe, which
is made a subclass of the more coarse-grained
original FrameNet frame. In addition, an-
other type of microframes, denoted as synset-
microframes, are created from the synsets in
WordNet 3.0. The IRIs for the microframes
are coined by appending the more specific
identifier (LU or synset) to the IRI of the
parent macroframe. For instance, macroframe
class frame-Personal_relationship has,
among others, two subclass microframes:
frame-Personal_relationship-partner.n
and frame-Personal_relationship-wn_
spouse_n_10640620. The former is obtained
from an LU in FrameNet, and the “n” suffix
indicates that it is a noun concept. The latter is
obtained from a synset in WordNet, including
the number (synset ID).

3. Intermediate Nodes: As mentioned earlier in
this section, macroframes are sometimes too
general, while LU-microframes and synset-
microframes are too fine-grained, sometimes
leading to multiple aliases for near-identical con-
cepts. This is addressed by providing a novel in-
termediate level composed of miniframes. Each
miniframe groups together a cluster of LU-
microframes and synset-microframes that have
equivalent or near-equivalent meanings.
Algorithm 1 describes how the clusters are cre-
ated, defined in a set C of pairs of microframes
representing edges of a graph. In the main
loop, the algorithm independently considers
each macroframe m. Such macroframes have
microframes as direct descendants. First, for a
givenm, an empty set C ′ of pairs of microframes
is declared. Then, for each LU-microframe l that
is a direct descendant of m, the corresponding
set S(l) of synsets equivalent to l is retrieved
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Algorithm 1 Algorithm for generating clusters
Input:
S(l) . Function from Equation 1
R . Set of lexical relations

Output:
C . Set of pairs of edges defining the clusters

C ← {}.
for each leaf macroframe m do

C ′ ← {}.
for each LU-microframe l under m do

for each sl ∈ S(l) do
Add (l, sl) to C ′.

end for
for each sl ∈ S(l) do

for each r ∈ R do
for each s′l ∈ r(sl) do

Add (l, s′l) to C.
end for

end for
end for

end for
for each (l, s) ∈ C ′ do

for each LU-microframe l′ under m do
if each l′ 6= l ∧ (l′, s) ∈ C ′ then

Add (l, s) to C.
end if

end for
end for

end for
C ← TransitiveClosure(C ∪ C−1).

from the FrameNet–WordNet mapping (S(l) as
defined in Equation 1, but we omit the param-
eters here). In the case of the mapping in Sec-
tion 4.1, |S(l)| = 1, but in general it could have
more than one element. C ′ is filled with pairs of
microframes connecting LU-microframe l with
each synset-microframe in S(l). Then, C ′ is ex-
panded by adding all other synsets related by
lexical relations reflecting cross-POS morpho-
logical transformations (R): “Derivationally re-
lated”, “Derived from Adjective”, “Participle”,
and “Pertainym”. The lexical relation “Deriva-
tionally related” connects word senses that share
the root (normally from different POS, e.g., the
verb visualize and the noun visualizer, but can
also have the same POS like author and author-
ship). “Pertainym” and “Derived from Adjective”

are more specific and overlapping, connecting
nouns and adverbs, respectively, with adjectives.
They cover some cases not covered by “Deriva-
tionally related” (e.g., textile as an adjective
and as a noun). “Participle” connects verbs with
their participle form (e.g., stack with stacked).
In general, these lexical relations do not neces-
sarily imply any close semantics (e.g., the verb
create and the noun creature), but when re-
stricted to synsets all tied to the same FrameNet
frame, such cases are normally factored out.
Therefore, from the pairs in C ′, only those
will be copied to C whose second element
(synset-microframe) appears twice. That is, it
has been generated from two different l under
m. The goal of using the lexical relations is
linking cross-POS LU-microframes that evoke
the same specific situation with a different
syntactic form, such as nominalizations (pro-
duce–production), non-finite verb forms (pro-
duce–produced), adjectivization, or adverbiza-
tion. Next, the LU-microframe is connected with
the synset-microframes from the set of synsets,
using the property framebase:isSimilarTo,
which is declared to be transitive and symmetric
in OWL (although the sets of triples produced
materialize the transitive and symmetric closure,
so in practice this is not needed).
Finally, the transitive closure of the symmet-
ric closure of C is calculated, which effectively
creates cliques for the clusters.
Figure 5 presents examples of clusters under a
single macroframe.
Once C is obtained, the property
framebase:isSimilarTo is used to connect
each pair of microframes in C, and for each
cluster or clique in C, intermediate miniframes
are reified5 and declared superframes of the
members of the cluster, and at the same
time subframes of their previously immediate
superframe. Each miniframe is also connected
by framebase:isSimilarTo to the subframes.
An example of the result can be appreciated in
Figure 4.

5This is yet another different but related use of the
term reification. In general, reification means the process
of making something real, and in the context of knowledge
bases, can be used whenever a new entity is created for some-
thing that was only implicitly represented before, generally
as a function of pre-existing entities.
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The use of the property
framebase:isSimilarTo yields direct con-
nections between members of the cluster. It
may also be convenient in contexts when
users wish to reduce sparsity by completely
merging all members of each cluster. In this
case, they can achieve this simply by declaring
framebase:isSimilarTo a subproperty of
rdfs:subClassOf and enabling RDFS inference.
By virtue of the already materialized inverses of
framebase:isSimilarTo, every instance of a
member of the cluster, including the miniframe,
becomes an instance of the others. Alternatively,
owl:equivalentClass can be used.

4.3. Labeling of the Hierarchy

Names, definitions, and glosses in FrameNet
and WordNet are also used to create text annota-
tions for our schema. Lexical forms are attached
with rdfs:label and definitions and glosses
from FrameNet and WordNet are attached with
rdfs:comment. Additional linguistically rich anno-
tations are added using Lemon [40]. An example
annotation is provided in Figure 6.

@prefix lemon: <http://lemon-model.net/lemon#> .
@prefix lexinfo: \

<http://www.lexinfo.net/ontology/2.0/lexinfo#> .

:lexicon a lemon:Lexicon ;
lemon:entry :frame--Self_motion--fly.v-le .

:frame--Self_motion--fly.v-le a lemon:LexicaEntry;
lemon:canonicalForm [

lemon:writtenRep "fly"@en ] ;
lemon:sense [

lemon:reference :frame-Self_motion-fly.v ] ;
lemon:synBehavior [

a lemon:Frame ;
lexinfo:partOfSpeech lexinfo:verb ] .

Figure 6. Example of Lemon annotation for LU-microframe.

Following the best practices in the Linked Open
Data community, we link synset-microframes to
IRIs in the canonical RDF translation of Word-
Net [41]. We also provide links to word-sense IRIs in
Lexvo.org, a KB that connects information about
languages, words, characters, and other human
language-related entities [13,14]. This allows Frame-
Base to be transitively connected to other KBs
in the Linked Open Data web, as well as provide
multilingual support.

In general, the schema depends on OWL
inference, albeit of a lighter kind, con-
sisting merely of RDFS inference plus
support for owl:TransitiveProperty,
owl:SymmetricProperty, and
owl:equivalentClass. However, the use of
the transitive and symmetric closure (which is
manageable for the size of the schema) and the
inverted rdf:subClassOf properties makes it
possible to instead rely only on RDFS inference,
which is more widely implemented and usually
more efficient than OWL inference.

4.4. Automatic Reification–Dereification
Mechanism

While frames are convenient for representational
purposes, users wishing to query the knowledge
base benefit from direct binary predicates between
pairs of frame elements. For example, for a birth
event, binary predicates like bornInPlace and
bornOnDate can facilitate querying by offering a
more compact and simple representation.

Thus, FrameBase presents a novel mechanism to
convert between frame representations and direct
binary predicates. This mechanism can also allow
us to avoid materializing frame instances when only
two frame elements are needed.

4.4.1. Structure of ReDer Rules
The dereification rules have the form expressed

in Figure 7. Additionally, for each dereification rule
there is a converse reification rule so that one can
go back from binary predicates to the frame repre-
sentation. Each Direct Binary Predicate (DBP) has
only one set of possible frame and frame elements
associated, and therefore chaining reification and
dereification rules is an idempotent operation. We
call the pair of a reification rule and its converse
dereification rule a ReDer (reification-dereification)
rule. An example of a ReDer rule is provided in
Figure 8.

?s <DIRECT_BINARY_PREDICATE> ?o
l
<FRAME_INSTANCE> a <FRAME_CLASS> ,
<FRAME_INSTANCE> <FRAME_ELEMENT-S> ?s ,
<FRAME_INSTANCE> <FRAME_ELEMENT-O> ?o .

Figure 7. The general pattern of a ReDer rule. The conjunc-
tion of the three triples below is semantically equivalent to
the triple above.
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?s :dbp-Statement-writesAboutTopic ?o
l
?F a :frame-Statement-write.v ,
?F :FE-Statement-Speaker ?s ,
?F :FE-Statement-Topic ?o .

Figure 8. A particular example of a ReDer rule. The direct bi-
nary predicate :dbp-Statement-writesAboutTopic has the
lexical label “writes about topic”, and connects the val-
ues of :FE-Statement-Speaker and :FE-Statement-Topic
when they are connected to a common frame of type
:frame-Statement-write.v, which is associated with the
verb “to write” when it evokes a “Statement” frame.

The ReDer rules can be implemented in different
ways.

– As SPARQL CONSTRUCT queries, due to
SPARQL’s prominence as a standard query
language for KBs [28]. These can be used to
materialize the DBPs into the KB.

– As clauses, with triples as atoms, to be fed
into general-purpose inference engines, with or
without materialization. For example, ReDer
rules can also be implemented as rules for the
Rubrik reasoner in Jena [6].

Given an instance set (ABox), the reified and
dereified layers can be stored using different strate-
gies.

1. Materializing both the reified and dereified lay-
ers. This is the simplest but less space-efficient
approach. Ensuring consistency between both
layers after updates to a single one requires
some bookkeeping.

2. Materializing the reified layer and virtualizing
the dereified layer. This means that the triples
with DBPs as predicates are not stored in the
KB like the rest, but they can be inferred at
query time. A general-purpose inference en-
gine like the Rubrik reasoner [6] could han-
dle ReDer rules, since these can be written
as definite clauses. This offers moderate space
efficiency. Only the dereification sense of the
rules is used. Ensuring consistency after up-
dates is trivial if only the materialized layer is
updated.

3. Materializing frame instances with two FEs in
the dereified layer and the rest in the reified
layer. This offers the highest space efficiency.
Ensuring consistency after updates is the most
complex of the three cases, because knowledge
has to be moved between the reified and derei-

fied layers when triples with FE predicates are
added or deleted.

This choice of the storage strategy is in theory or-
thogonal to the implementation of the ReDer rules.
In practice, however, storage strategy 1 is relatively
trivial to implement using SPARQL CONSTRUCT
implementations of the ReDer rules, while storage
strategy 2 is trivial to implement using dereifica-
tion rules in Jena format. Storage strategy 3 would
require internal logic (which has not been imple-
mented so far), making the choice of the format a
design choice.
Besides the plain rdfs:label and

rdfs:comment annotations, we annotate the DBPs
using Lemon [40]. This provides syntactically rich
annotations that describe the internal structure
and external syntactic frame of their labels.
Instead of using Lemon’s generator, which uses
automatic tokenization, parsing, etc., we use
our knowledge of the synthetic structure of
the different possible labels for DBPs to create
annotations with human-level precision. Similarly,
we also use Lemon for annotating microframes.

4.4.2. Creation of ReDer rules
The ReDer rules are automatically built using

the syntactic annotations of English sentences given
for different LUs in FrameNet, like the grammatical
function (GFs) and phrase types (PTs) [58]. These
are used in FrameNet to describe the syntactic
valence properties of individual lexical items. In
particular, in the annotated sentences in FrameNet,
each instance of an example sentence annotated
by a frame is accompanied by the GF and PT
associated with each of the FEs of that frame filled
in that sentence.

FrameNet provides three kinds of GF labels.

– External Argument (Ext). In the case of verb
LUs, it represents the subject of the LU (“[The
physician] performed the surgery” [58]), any
constituent that controls the subject of the
LU (“[The doctor] tried to cure me”), or a
dependent of a governing noun (“We are glad
for the [American] decision to provide relief”).
In the case of adjective LUs, it is the subject
of a copular verb (“[The chair] is red”), or
other semantically similar constructions (“We
consider [Pat] very intelligent”). In the case
of noun LUs, the external argument can be
interpreted as the subject of a semantically
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related verb in a periphrasis (“[He] made a
statement to the press”).

– Object (Obj). The syntactic object of a verb
LU (“Voters approved [the stadium mea-
sure]”).

– Dependent (Dep). This is the general gram-
matical function assigned to adverbs, Preposi-
tional Phrases (PPs), and some other attached
constituents, but in our case only PPs are used.
In these cases, the PP annotation is attached
(between square brackets) to the preposition
forming the PP. It can be used for verb LUs
(“Give the gun [to the officer]”; PP[to]), adjec-
tive LUs (“Lee is certain [of his innocence]”;
PP[of]) or noun LUs (“The letter was [to the
President]”; PP[to]).

Some of the PT labels that can be found are N
(noun), NP (noun phrase), Obj (object) and PPin-
terrog (PP interrogative).
Only constituents tagged with frame elements

are assigned grammatical functions. While target
words (LUs) are occasionally tagged with frame
elements, they are never assigned a grammatical
function.
ReDer rules and new DBPs are created using

ReDer rule constructors. Each constructor specifies
certain conditions on the annotations associated
with a pair of FEs in an example sentence. When
the conditions are met, a new DBP is generated
and a ReDer rule containing the pair of FEs is
created.

The constructors are shown in Figures 9–14. As
in the general reification-dereification rule pattern
in Figure 7, the postfixes “-S” and “-O” in the
constructors indicate the data associated with the
FEs that fill the first and second arguments of
the DBP, respectively, or equivalently, the respec-
tive subject and object of the resulting RDF triple.
The creation of the DBP implies the creation of
a dereification rule following the pattern in Fig-
ure 7, with <FRAME_CLASS> defined by the LU, and
<FRAME_INSTANCE> left as a free variable. The cor-
responding reification rule is built similarly, but
assigning an anonymous node or a skolem constant
to <FRAME_INSTANCE>.

The Agent-Verb-Patient constructor in Figure 9
creates DBPs whose lexical heads are verbs, whose
subjects in the KB are agents, and whose objects
are patients, thus having a lexical representation
in the form of linguistic predicates in active voice.

Agent-Verb-Patient constructor
Create ReDer rule with DBP whose name is:
“ConjugateThirdPersonSingular(LU)”
when an annotated sentence satisfies:
IsVerb(LU) and PT-O in {N, NP, Obj, PPin-
terrog, Sinterrog, QUO, Sfin, Sub, VPing} and
(

( GF-S==Ext and GF-O==Obj
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU) )
or
( GF-S==Obj and GF-O==Ext
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU) )

)

Examples of created ReDer rules:

?S :dbp-Forming_relationships-divorces ?O
l

?R a :frame-Forming_relationships-\
divorce.v

,

?R :fe-Forming_relationships-Partner_1 ?S ,
?R :fe-Forming_relationships-Partner_2 ?O .

?S :dbp-Win_prize-wins ?O
l
?R a :frame-Win_prize-win.v ,
?R :fe-Win_prize-Competitor ?S ,
?R :fe-Win_prize-Prize ?O .

Figure 9. Agent-Verb-Patient ReDer rule constructor and
some examples of ReDer rules created.

The constructor inverts example sentences that are
deemed to be in passive form.
There is no explicit syntactic annotation in

FrameNet to indicate if the verb LUs are
evoked in passive form. Therefore, two differ-
ent heuristics are used for detecting this. One
(IsPassivePosHeuristic(LU)) draws on the POS
annotations available in FrameNet, and decides
that the target (LU) verb is in passive if and only
if it appears as a past participle, and the verb
to be, in any form, is in a prior position, with-
out another verb in between. The other heuristic
(IsPassiveDepHeuristic(LU)) uses the Stanford
dependency parser [36], determining that the target
(LU) verb is in passive if and only if it is the source
of any of the dependencies nsubjpass, csubjpass
or auxpass. Both heuristics make type I and II er-
rors (false positives and false negatives) differently,
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Patient-Verb-Agent constructor
Create ReDer rule with DBP whose name is:
“is ConjugatePastParticiple(LU) by”
when an annotated sentence satisfies:
IsVerb(LU) and PT-O in {N, NP, Obj, PPin-
terrog, Sinterrog, QUO, Sfin, Sub, VPing} and
(

( GF-S==Obj and GF-O==Ext
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU) )
or
( GF-S==Ext and GF-O==Obj
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU) )

)

Examples of created ReDer rules:

?S :dbp-Filling-isLoadedBy ?O
l
?R a :frame-Filling-load.v ,
?R :fe-Filling-Goal ?S ,
?R :fe-Filling-Agent ?O .

?S :dbp-Kidnapping-isKidnapedBy ?O
l
?R a :frame-Kidnapping-kidnap.v ,
?R :fe-Kidnapping-Victim ?S ,
?R :fe-Kidnapping-Perpetrator ?O .

Figure 10. Patient-Verb-Agent ReDer rule constructor and
some examples of ReDer rules created.

so the cases where they disagree were discarded,
and in the ones where they agree that there is pas-
sive form, the rules are created inverting the Ext
and Obj GFs.

The Patient-Verb-Agent constructor in Figure 10
is the converse of the Agent-Verb-Patient construc-
tor: it also creates DBPs whose lexical head are
verbs, but whose subject in the KB is a patient,
and whose object is an agent, thus having a lexical
representation using the passive voice. Every time
the Agent-Verb-Patient constructor is invoked on
an example sentence and a pair of FEs, the Patient-
Verb-Agent constructor is invoked as well, creating
the converse DBP.
The Agent-Verb-PP constructor in Figure 11

creates DBPs whose lexical heads are verbs, whose
subjects in the KB are agents, and whose objects
are complements that are contained in a PP in the
example sentence. In the DBP label, a new PP is

Agent-Verb-PP constructor
Create ReDer rule with DBP whose name is:
“ConjugateThirdPersonSingular(LU)
Prep FrameElement-O”
when an annotated sentence satisfies:
IsVerb(LU) and PT-O==PP[Prep] and (

( GF-S==Ext and GF-O==Dep
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU) )
or
( GF-S==Obj and GF-O==Dep
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU) )

)

Examples of created ReDer rules:

?S :dbp-Creating-createsFromComponents ?O
l
?R a :frame-Creating-create.v ,
?R :fe-Creating-Creator ?S ,
?R :fe-Creating-Components ?O .

?S :dbp-Win_prize-winsAtVenue ?O
l
?R a :frame-Win_prize-win.v ,
?R :fe-Win_prize-Competitor ?S ,
?R :fe-Win_prize-Venue ?O .

Figure 11. Agent-Verb-PP ReDer rule constructor and some
examples of ReDer rules created.

included using the name of the FE-O, following the
convention used to name predicates in many LOD
KBs (e.g., diedOnDate, isWrittenByAuthor, etc.).
However, the preposition in the PP in the example
sentence is not always the most appropriate to
insert in the DBP label. Therefore, Algorithm 2
is used, where different options are tried in order,
with more precise but narrow-scoped ones first.

The Patient-Verb-PP constructor (Figure 12)
changes agent with patient with respect to the con-
structor Agent-Verb-PP, in the same way Patient-
Verb-Agent does with respect to the constructor
Agent-Verb-Patient. It creates verb-based DBPs
whose subjects in the KB are patients instead of
agents, and the DBP has a lexical representation
using passive voice.
Using only agent and patient as subject of the

triple prevents the constructors from forming DBPs
that would rarely be useful, like those connecting
the time and place, or the place and the cause.
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Patient-Verb-PP constructor
Create ReDer rule with DBP whose name is:
“is ConjugatePastParticiple(LU)
Prep FrameElement-O”
when an annotated sentence satisfies:
IsVerb(LU) and PT-O==PP[Prep] and (
(GF-S==Obj and GF-O==Dep
and not IsPassivePosHeuristic(LU)
and not IsPassiveDepHeuristic(LU) )
or
( GF-S==Ext and GF-O==Dep
and IsPassivePosHeuristic(LU)
and IsPassiveDepHeuristic(LU) )

)

Examples of created ReDer rules:

?S :dbp-Destroying-isDestroyedByMeans ?O
l
?R a :frame-Destroying-destroy.v ,
?R :fe-Destroying-Undergoer ?S ,
?R :fe-Destroying-Means ?O .

?S :dbp-Beat_opponent-isDefeatedByWinner ?O
l
?R a :frame-Beat_opponent-defeat.v ,
?R :fe-Beat_opponent-Loser ?S ,
?R :fe-Beat_opponent-Winner ?O .

Figure 12. Patient-Verb-PP ReDer rule constructor and
some examples of ReDer rules created.

The Agent-Verb-Noun-PP constructor (Fig-
ure 13) and the Agent-Verb-Particle-Noun con-
structor (Figure 14) create ReDer rules with
DBPs whose heads are nouns, based on noun LU-
microframes. In these cases, a verb is needed that
takes the noun as an argument, normally as a direct
object. Across RDF vocabularies and ontologies,
this verb is sometimes made implicit in human-
readable IRIs and lexical labels alike. For exam-
ple skos:hasTopConcept includes “has” explicitly,
while skos:topConceptOf includes “is” implicitly.
In FrameBase, the modeling choice has been to
always make them explicit both in the IRI and in
the lexical annotations, in order to avoid ambiguity
and prevent incorrect use. The verbs have been
conjugated in third person singular form.
The difference between these two constructors

is that in the Agent-Verb-Noun-PP constructor
(Figure 13), the noun is part of the object of the
verb, while in the Agent-Verb-Particle-Noun-PP

Algorithm 2 The algorithm that is used to select
the preposition. c(e, p, s) is 1 if frame element e
is annotating a PP with preposition p in example
sentence s, and 0 otherwise. P is the set of prepo-
sitions existing in the annotations across the set
of sentences S. h(e) is an function that maps the
40 most common frame elements to a manually
selected preposition.

Input:
s0 . Annotated sentence
e0 . FE-O in annotated sentence

Output:
p . Preposition

p′ ← arg maxp

∑
s∈S c(e0, p, s)

if
∑

s∈S c(e0, p
′, s)/

∑
s∈S,p∈P c(e0, p, s) ≥ 0.5

then
return p′

end if
if p ∈ domain(h) then

return h(e0)
end if
if max({c(e0, p, s0)|p ∈ P}) = 1 then

return arg maxp c(e0, p, s0)
end if
if max({

∑
s∈S c(e0, p, s)|p ∈ P}) > 0 then

return p′
end if
return “with”

constructor (Figure 14) it is part of a PP with its
own preposition.

In both cases, the verb governing the noun is ob-
tained using the same method. For each noun LU in
an annotation, the head verb is extracted by pars-
ing the example annotated sentences with the Stan-
ford dependency parser and searching the paths of
dependencies indicated in the constructors Agent-
Verb-Noun-PP and Agent-Verb-Particle-Noun-PP6.
For brevity, the paths are annotated with the no-
tation of SPARQL property paths, but this is not
part of any query.
The Agent-Verb-Noun-PP constructor contains

several possible dependency paths using dependen-
cies of type “dobj” (direct object), “cop” (copula),

6We use collapsed CC-processed dependencies, version
3.2.0.
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“nsubj” (nominal subject), and “prep” (preposi-
tion).

– (LU ^dobj HeadVerb) matches Head-
Verb=“make” and LU=“comment” for the
sentence “I have decided not to make any
further comment concerning the change of
ball during the lunch interval at Lord ’s on
Sunday”.

– (LU cop HeadVerb) matches HeadVerb=“is”
and LU=“maiden name” for the sentence “The
maiden name of one of his wives (probably the
second) was Watt”.

– (LU ^nsubj/cop HeadVerb) matches Head-
Verb=“is” and LU=“cause” for the sentence
“The short-term cause of overriding local sig-
nificance were the droughts and crop failures
in 1920 and 1921”.

– (LU ^prep_*/cop HeadVerb) matches Head-
Verb=“is” and LU=“cause” for the sentence
“Well-meaning ignorance is one of the biggest
causes of animal suffering in this country (...)”.

– (LU ^prep_*/^dobj HeadVerb) matches
HeadVerb=“give” and LU=“thought” for the
sentence “I have given a great deal of thought
as to how much I should actually tell you about
this period and what just to leave to your imag-
ination”.

The Agent-Verb-Particle-Noun-PP constructor
fires in cases of phrasal verbs, where the head verb
must be extracted with a particle.

– (LU ^prep_VerbParticle HeadVerb) matches
HeadVerb=“go”, VerbParticle=“on” and
LU=“tour” for the sentence “Something else
I shall miss by going on this dratted tour with
Gwen!”.

The Subject-Copula-Adjective-PP constructor
in Figure 15 creates adjective-based DBPs using
the copular verb “to be”.

With the rules obtained with the process above,
the same DBP can be associated with different
reified patterns (i.e., pairs of frame elements in a
given LU-microframe), owing to different senses
or syntactic frames for a given verb – for example
the transitive and intransitive syntactic frames for
ergative verbs such as to break. This would con-
flate different senses, and if the reification and the
dereification directions of the rules were chained,
it would logically entail different pairs of frame
elements, which would not be sound. Furthermore,

Agent-Verb-Noun-PP constructor
Create ReDer rule with DBP whose name is:
“ConjugateThirdPerson-
Singular(HeadVerb)
LU Prep Frame-Element-O”
when an annotated sentence satisfies:
IsNoun(LU) and PT-O==PP[Prep] and
GF-S==Ext and GF-O==Dep and (

LU ^dobj HeadVerb or
LU cop HeadVerb or
LU ^nsubj/cop HeadVerb or
LU ^prep_*/cop HeadVerb or
LU ^prep_*/^dobj HeadVerb

)

Examples of created ReDer rules:

?S :dbp-Coming_to_believe-\
makesInferenceFromEvidence ?O
l
?R a :frame-Coming_to_believe-inference.n ,
?R :fe-Coming_to_believe-Cognizer ?S ,
?R :fe-Coming_to_believe-Evidence ?O .

?S :dbp-Arriving-makesEntranceByMeans ?O
l
?R a :frame-Arriving-entrance.n ,
?R :fe-Arriving-Theme ?S ,
?R :fe-Arriving-Means ?O .

Figure 13. Agent-Verb-Noun-PP ReDer rule constructor
and some examples of created ReDer rules.

a given reified pattern can also produce different
DBPs, which would lead to redundancy. To achieve
the idempotency mentioned earlier, a DBP should
not be connected to more than one reified pattern
(i.e. not present in more than one ReDer rule). To
avoid redundancy, a reified pattern should not be
connected to more than one DBP (ditto). There-
fore, it is necessary to find an {0, 1}-to-{0, 1} as-
signment between DBPs and reified patterns. To
obtain the most correct and intuitive of such pos-
sible assignments, we optimize the number of ex-
ample sentences on which the ReDer rules in the
one-to-one assignment are based. This can be seen
as an instance of the assignment problem. We build
a bipartite graph with the set of DBPs and the set
of reified patterns as the two sets of vertices, and
with pairs of DBPs and reified patterns connected
by edges weighted with the additive inverse of the
number of annotated example sentences creating
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Agent-Verb-Particle-Noun-PP constructor
Create ReDer rule with DBP whose name is:
“ConjugateThirdPerson-
Singular(HeadVerb) VerbParticle
LU Prep Frame-Element-O”
when an annotated sentence satisfies:
IsNoun(LU) and PT-O==PP[Prep]
and GF-S==Ext and GF-O==Dep and (
LU ^prep_VerbParticle HeadVerb

)

Examples of created ReDer rules:

:dbp-Awareness-\
worksTowardsUnderstandingAboutTopic ?O
l
?R a :frame-Awareness-understanding.n ,
?R :fe-Awareness-Cognizer ?S ,
?R :fe-Awareness-Topic ?O .

:dbp-Discussion-\
-goesIntoDiscussionWithInterlocutor2 ?O
l
?R a :frame-Discussion-discussion.n ,
?R :fe-Discussion-Interlocutor_1 ?S ,
?R :fe-Discussion-Interlocutor_2 ?O .

Figure 14. Agent-Verb-Particle-Noun-PP ReDer rule con-
structor and some examples of created ReDer rules.

a ReDer rule that connects that DBP with that
reified pattern (positive infinity is used as weight
for the pairs that do not have any associated ReDer
rule created from examples). The Kuhn-Munkres
algorithm[47] can be applied over this graph to find
a maximal subset of the ReDer rules that satisfies
the {0, 1}-to-{0, 1} condition between DBPs and
reification patterns and maximizes the number of
example sentences on which they are based. The
Kuhn-Munkres algorithm is chosen for its poly-
nomial (cubic) complexity. Although this could
still be a problem for the total number of original
ReDer rules, it is averted by creating an indepen-
dent instance of the problem for the rules created
from each frame. This does not change the results
because ReDer rules are not created connecting
DBPs and reified patterns from different frames
(the DBP IRIs contain the frame name as a sort of
namespace).

For alternative applications where the {0, 1}-to-
{0, 1} condition is not necessary, like using the pre-
filtered DBPs as lexical labels of the filtered DBPs,
the original mapping can be used.

Subject-Copula-Adjective-PP constructor
Create ReDer rule with DBP whose name is:
“is LU Prep FE-o”
when an annotated sentence satisfies:
IsAdjective(LU) and phrase-type-
o==PP[Prep]
and grammatical-function-s==Ext
and grammatical-function-o==Dep

Example of created ReDer rule:

?s dbp-Sound_level-isLoudToDegree ?o
l
f type frame-Sound_level-loud.a ,
f fe-Sound_level-Entity ?s ,
f fe-Sound_level-Degree ?o .

Figure 15. Subject-Copula-Adjective-PP ReDer rule con-
structor and some examples of created ReDer rules.

5. Evaluation of the Schema

In this section, we evaluate the results of the
methods used to create the FrameBase schema (Sec-
tion 4) as well as some practical examples resulting
from the integration of knowledge (Section 6).
First, Section 5.1 presents the evaluation of

the FrameNet-WordNet mapping described in Sec-
tion 4.1. Then, Sections 5.2 and 5.3 present our find-
ings for the methods for constructing the schema
hierarchy (Section 4.2) and the construction of the
ReDer rules (Section 4.4). These two sets of results
(summarized in Table 3) cover all the parts of the
schema that are created automatically, and since
the original resources (FrameNet and WordNet)
are created manually, these results provide a com-
plete evaluation of the quality of the FrameBase
schema with respect to the standard of human-level
annotations.

5.1. FrameNet–WordNet Alignment

To evaluate the created schema, the created
FrameNet–WordNet mapping has been compared
to the gold standard used to evaluate MapNet [66].
This gold standard uses older versions of FrameNet
and WordNet, so mappings from WordNet 1.6 to
3.0 [10] had to be applied, removing those with
a confidence lower than one, and the few LUs of
FrameNet 1.3 that are not contained in FrameNet
1.5 were discarded. 5-fold cross-validation was used
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Table 3
Quality measures for the FrameBase schema for intra-cluster
pairs of microframes, verb-based ReDer rules, and noun-
based ReDer rules. Nuanced correctness is a variable col-
lected over correct elements, that reflects how perfectly ac-
curate the element is (perfect synonymy for pairs of mi-
croframes, readability for rules).

Correctness Nuanced correctn.
Cluster pairs 87.55%± 6.18% 31.15%± 9.38%
V-ReDer rules 96.22%± 3.22% 80.43%± 7.61%
N-ReDer rules 87.50%± 6.41% 91.91%± 6.28%

for obtaining the results. Table 4 compares the
results against state-of-the-art approaches and the
scores that they report on the MapNet gold stan-
dard. As stated as goal when setting the cardinality
restrictions in Section 4.1, the approach described
in Section 4 achieves higher precision (albeit with
a very narrow margin) while still maintaining good
recall. For this reason, we consider it more appro-
priate than the previously existing ones to be used
in the following steps because high precision is
usually prioritized for tasks related to knowledge
representation. It must be noted, however, that
there are minor differences since our results in Ta-
ble 4 are evaluated without the few frames dropped
between FrameNet 1.3 and 1.5, and some results
[37,66] also without using the inter-version Word-
Net mapping. However, this also means that our
new mapping developed for FrameBase provides
results for more recent and updated versions of
FrameNet and WordNet.

It may be relevant to note that there is in practice
an upper bound to precision scores in tasks like this
because of the subjective component of any gold
standard. The creators of the gold standard [66]
report “0.90 as Cohen’s Kappa computed over 192
LU-synset pairs for the same mapping task” by [12].
More generally, Fellbaum & Baker [19] maintain
that “both people and automatic systems, when
asked to assign tokens in a text to the appropriate
senses in dictionaries, find the task difficult and do
not agree among themselves”.

5.2. Creation of the Hierarchy

The frame hierarchy in the FrameBase schema
is based on FrameNet and WordNet and the map-
ping created between the two resources. It provides
19,376 frames, including 11,939 LU-microframes
and 6,418 synset-microframes, all with lexical la-

bels. A total of 18,357 microframes are clustered
into 8,145 logical clusters, which are the sets of
microframes whose elements are linked by a logi-
cal equivalence relation. The size of the schema is
250,407 triples.

The quality of the microframe clusters has been
evaluated by asking two independent reviewers to
evaluate a random sample of 100 intra-cluster pairs
of LU-microframes. Each pair has been annotated
with two variables: correctness (1 if the pair is
correct, 0 otherwise) and synonymy (only applying
when the pair is correct; assigned value 1 if they
are WordNet-level synonyms, or 0 if there is a
change of nuance higher than that but still having
significant semantic overlap). A resulting average
correctness of 87.55% has been obtained. The
95% Wilson confidence interval is [81.37, 93.73],
which means that if the experiment were to be
repeated on different random samples, 95% of all
times the generated interval would contain the
true correctness score. The evaluation showed
a small change of nuance (synonymy = 0) for
31.15%± 9.38% of the correct pairs. The 95% Wil-
son confidence interval is [21.77, 40.53]. Some ex-
amples of such pairs are (Amalgamation-merge.v,
Amalgamation-unify.v),
(Giving-contribution.n, Giving-gift.n) and
(Color-purple.a, Color-violet.a). Most of
these are caused by the choice to use semantic
pointers such as “Similar to”, which could be
removed if very fine-grained distinctions of
microframes were desired. The linear weighted
Cohen’s Kappa (inter-annotator agreement) over
the three-valued combination of the two variables
with which each cluster pair is annotated was
0.23 over a maximum of 0.87. The maximum here
refers to the highest value that the Kappa could
achieve given the distribution of scores obtained
from the raters.

5.3. Reification–Dereification Rules

Additionally, reification-dereification rules are
provided, with the same number of direct binary
predicates, with both human-readable IRIs and lex-
ical labels. 83,790 are verb-based, 3,190 are noun-
based, and 7,248 are adjective-based. For evaluat-
ing them, the same methodology was used, with
two independent human annotators. Two different
variables were used for each rule: correctness and
readability. A ReDer rule is considered correct if
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Table 4
Comparison of FrameBase’s FrameNet–WordNet mapping
to state-of-the-art approaches in terms of precision, recall,
F1, and accuracy, from the original papers. †Mappings from
WordNet 1.6 to WordNet 3.0 are used to convert from the
MapNet gold standard.

Prec Rec F1 Acc

SVM Polynomial kernel 1 [66] 0.761 0.613 0.679 —
SVM Polynomial kernel 2 [66] 0.794 0.569 0.663 —
SSI-Dijkstra [37] 0.78 0.63 0.69 —
SSI-Dijkstra+ [37] 0.76 0.74 0.75 —
Neighborhoods [20] † — — — 0.772
FrameBase’s mapping † 0.789 0.709 0.746 0.864

the new name can be interpreted as a relation such
that the dereified side is a necessary and sufficient
condition of the reified side. A correct rule is con-
sidered to be not easily readable if the name of the
direct binary predicate contains a preposition that
is appropriate for some but not all possible objects,
or it is not appropriate for the frame element in
the name, or it contains a frame element whose
meaning is not obvious for a layperson. For the
latter task, the annotators were asked to provide
an assessment of whether a layperson could un-
derstand certain terms: for instance, “patient” in
FrameNet has a different meaning than the usual
one in general language.

The obtained average correctness for verb-based
rules is 96.22%± 3.22%, whereas 80.43%± 7.61%
of the correct rules were found easily readable.
For noun-based rules, the respective scores are
87.5%±6.41% and 91.91%±6.28%. Cohen’s kappa
for the two annotations was 0.39 (over a maximum
of 0.54).7
Table 5 provides some examples of the evalu-

ated rules. Rules 1-2 are both correct and readable.
Rules 3–4 are correct but not readable. In rule 3,
the preposition “in” would be more appropriate. In
rule 4, the term “Locus” is too specialized. Rules
5–7 are not correct. In rule 5, Direction cannot be
the FE-Obj (it should be Phenomenon). In rule 6,
Theme cannot be the FE-Subj (it should be Agent).

7The maximum of Cohen’s Kappa is defined as the highest
value that it could achieve given the distribution of scores
from the raters, and can be useful when interpreting the
value obtained for the coefficient [68].

In rule 7, the DBP should be rushesThroughPath
or rushesAlongPath instead of rushes.

6. Integration

Knowledge from other KBs such as Freebase can
be integrated using integration rules. In practice,
these result in a graph transformation from the
source KB to FrameBase. Formally, these are rules
whose antecedent and consequent are graph pat-
terns sharing some variables. Whenever there is
an instantiation of variables that, applied to the
antecedent, returns a subset of the source KB, then
the consequent, after having applied the same in-
stantiation of variables, can be added to the Frame-
Base instance data (the ABox in the jargon of
description logics).
When the sources are in RDF, the most obvi-

ous choice for implementing integration rules is
using SPARQL CONSTRUCT queries with the
WHERE clause containing the antecedent and the
CONSTRUCT clause containing the consequent.
Additionally, SPARQL CONSTRUCT queries sup-
port predicates and logical operators that allow
for imposing additional logical conditions on the
WHERE clause to match the original KB (i.e., for
the rule to be fired). For non-RDF sources, a sim-
ple choice would be applying an off-the-shelf RDF
converter8 to pre-process the source, after which
SPARQL CONSTRUCT queries can still be used.
The SPARQL examples in this and the next

sections use the following prefixes.

8http://www.w3.org/wiki/ConverterToRdf
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Table 5
Examples of ReDer rules created and evaluated. “C” stands for “Correct” and “R” for “Readable”

C R DBP Frame FE-Subj FE-Obj
1 1 freezes Activity_pause-freeze.v Agent Activity

1 1 skims Reading-skim.v Reader Text

1 0 pukesWithManner Excreting-puke.v Excreter Manner

1 0 seizesAroundLocus Manipulation-seize.v Agent Locus

0 - glances Perception_active-glance.v Perceiver_agentive Direction

0 - releasesOnCircumstances Releasing-release.v Theme Circumstances

0 - rushes Fluidic_motion-rush.v Fluid Path

PREFIX : <http://framebase.org/ns/>
PREFIX freeb: <http://rdf.freebase.com/ns/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX sch: <http://schema.org/>

In Section 6.1, some examples of manually built
integration rules are presented for integrating
events from two different sources: DBpedia and
schema.org. Besides showing concrete examples of
rules, the section provides an assessment of the
expressiveness of the FrameBase schema in its cur-
rent state, by reviewing to which extent external
knowledge can be integrated when using manually
built rules. It also introduces a basic typology of
integration rules. These are important steps be-
fore reviewing the task of integrating knowledge
automatically.

Subsequently, Section 6.2 discusses the creation
of ReDer rules based on existing work. Finally, in
Section 6.3, we provide examples of queries that
make use of the schema.

6.1. Manually Built Integration Rules

We will first show two simple examples of inte-
gration rules integrating knowledge from Freebase.
They belong to two basic rule types that we label
Class-Frame and Property-Frame, which will later
serve as the basis for constructing more complex
rules.
Class-Frame integration rules integrate a class

from the source KB into a frame in FrameBase, and
the outgoing properties from the external class into
FE properties. The following example integrates
a class organization.leadership into the frame
:frame-Leadership-leader.n.

CONSTRUCT {
_:f a :frame-Leadership-leader.n .
_:f :fe-Leadership-Leader ?o1 .
_:f :fe-Leadership-Governed ?o2 .

_:f :fe-Leadership-Role ?o3 .
_:f :fe-Leadership-Type ?o4 .
_:timePeriod a :frame-Timespan-period.n .
_:timePeriod :fe-Timespan-Start ?o5 .
_:timePeriod :fe-Timespan-End ?o6 .

} WHERE {
?cvti a freeb:organization.leadership .
OPTIONAL { ?cvti
freeb:organization.leadership.person ?o1 .}

OPTIONAL { ?cvti
...organization.leadership.organization ?o2 .}

OPTIONAL { ?cvti
freeb:organization.leadership.role ?o3 .}

OPTIONAL { ?cvti
freeb:organization.leadership.title ?o4 .}

OPTIONAL { ?cvti
freeb:organization.leadership.from ?o5 .}

OPTIONAL { ?cvti
freeb:organization.leadership.to ?o6 .}

}

Property-Frame integration rules translate
a property from the source KB into a frame
and two FEs in FrameBase. The structure is
similar to that of ReDer rules, but the property
in the antecedent is not a FrameBase DBP,
although the similarity of the structure will
be exploited later to automatically produce
integration rules of this type from existing ReDer
rules. The following example integrates a property
freeb:people.person.nationality into the
frame frame-People_by_jurisdiction-citizen.n.
CONSTRUCT {
_:f a :frame-People_by_jurisdiction-citizen.n .
_:f :fe-People_by_jurisdiction-Person ?person .
_:f :fe-People_by_jurisdiction-Jurisdiction ?country .

} WHERE {
?person freeb:people.person.nationality ?country .

}

The next example pertains to the Event class
in DBpedia. It is a Class-Frame rule with exten-
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sions. From the nine properties of the Event class,
numberOfPeopleAttending was omitted because
the Event class is too general for it, as it has sub-
classes such as PersonalEvent (Birth, etc.) and
SocietalEvent, that are more appropriate for this.
The remaining eight properties were integrated,
but although the example shares the same basic
structure as the Class–Frame rule provided for Free-
base, it includes additional complex patterns in the
consequent.

CONSTRUCT {
?f a :frame-Event-event.n .
#
?f :fe-Event-Time _:timePeriod .

_:timePeriod a :frame-Timespan-period.n ;
fbe:fe-Timespan-Start ?o1 ;
fbe:fe-Timespan-End ?o2 .

#
_:af2 a :frame-Relative_time-preceding.a ;

:fe-Relative_time-Landmark_occasion ?f ;
:fe-Relative_time-Focal_occasion ?o3 .

#
_:af3 a :frame-Relative_time-following.a ;

:fe-Relative_time-Landmark_occasion ?o3 ;
:fe-Relative_time-Focal_occasion ?f .

#
_:af4 a :frame-Relative_time-following.a ;

:fe-Relative_time-Landmark_occasion ?f ;
:fe-Relative_time-Focal_occasion ?o4 .

#
_:af5 a :frame-Relative_time-preceding.a ;

:fe-Relative_time-Landmark_occasion ?o4 ;
:fe-Relative_time-Focal_occasion ?f .

#
_:af6 a :frame-Relative_time-following.a ;

:fe-Relative_time-Landmark_occasion ?f ;
:fe-Relative_time-Focal_occasion ?o5 .

#
_:af7 a :frame-Relative_time-preceding.a ;

:fe-Relative_time-Landmark_occasion ?o5 ;
:fe-Relative_time-Focal_occasion ?f .

#
?f :fe-Event-Reason ?o6 .
#
_:af8 a :frame-Dimension-length.n ;

:fe-Dimension-Object ?f ;
:fe-Dimension-Measurement ?o7 .

#
?f a :frame-Social_event-meeting.n ;

:fe-Social_event-Attendee ?o9 ;
:fe-Social_event-Duration ?o7 .

#
} WHERE {

?f a dbr:Event .
OPTIONAL{?f dbr:startDate ?o1}
OPTIONAL{?f dbr:endDate ?o2}
OPTIONAL{?f dbr:previousEvent ?o3}
OPTIONAL{?f dbr:followingEvent ?o4}

OPTIONAL{?f dbr:nextEvent ?o5}
OPTIONAL{?f dbr:causedBy ?o6}
OPTIONAL{?f dbr:duration ?o7}
OPTIONAL{ #Omitted
?f dbr:numberOfPeopleAttending ?o8}

OPTIONAL{?f dbr:participant ?o9}
}

The dbr:Event class has several subclasses that
can also be translated. However, the hierarchy in
the original ontology is not necessarily consistent
with the hierarchy in FrameBase. Only in certain
cases does a subsumption relationship between
two entities of the source also exist between the
two entities’ respective translations to FrameBase.
Therefore, for each translation of an element in the
source KB, the translations of more general ele-
ments can be added, and this provides additional
knowledge that would not always be inferred by
the FrameBase schema alone.
For example, using RDFS inference, the sub-

stitutions for ?f that trigger the rule below (“?f
a dbr:SocietalEvent”), also trigger the one for
dbr:Event because dbr:SocietalEvent is a sub-
class of dbr:Event. This rule is very short, because
in DBpedia, all of the outgoing properties belong
to the parent Event class itself.
CONSTRUCT {
?f a :frame-Social_event-meeting.n .

} WHERE {
?f a dbr:SocietalEvent

}

Similarly, the substitutions for ?f that
trigger five specific examples from DBpe-
dia – dbr:SpaceMission, dbr:Convention,
dbr:Election, dbr:FilmFestival,
dbr:MilitaryConflict) – also trigger the ones
for dbr:SocietalEvent and dbr:Event, because
the classes captured in the antecedent are
subclasses of dbr:SocietalEvent.

In the rule for dbr:SpaceMission, we minimize
the need for declaring new frames and frame ele-
ments for specialized domains by making use of
the compositionality of most specialized terms,
creating complex structures that combine the se-
mantics of simpler, basic elements. For instance,
the translation for the type dbr:SpaceMission de-
clares a frame of type Project-project.n, and
specifies that it is about space exploration by as-
signing dbrl:Space_exploration as the value for
the Project-Activity FE.
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CONSTRUCT {
?f a :frame-Project-project.n .
?f :fe-Project-Activity dbr:Space_exploration .

} WHERE {
?f a dbr:SpaceMission

}

CONSTRUCT {
?f a fbe:frame-Social_event-convention.n .

} WHERE {
?f a dbr:Convention

}

CONSTRUCT {
?f a :frame-Change_of_leadership-election.n .

} WHERE {
?f a dbr:Election .

}

CONSTRUCT {
?f a :frame-Social_event-festival.n .
?f :fe-Social_event-Attendee ?o3 .
?f :fe-Social_event-Descriptor dbr:Film .
?f a :frame-Competition-competition.n .
?f :fe-Competition-Participant_1 ?o3 .
?f :fe-Competition-Competition dbr:Film .
_:af1 a :frame-Ordinal_numbers-first.a .
_:af1 :fe-Ordinal_numbers-Item ?o1 .
_:af1 :fe-Ordinal_numbers-Comparison_set ?f .
_:af1 :fe-Ordinal_numbers-Comparison_set dbr:Film .
_:af2 a :frame-Ordinal_numbers-last.a .
_:af2 :fe-Ordinal_numbers-Item ?o2 .
_:af2 :fe-Ordinal_numbers-Comparison_set ?f .
_:af2 :fe-Ordinal_numbers-Comparison_set dbr:Film .

} WHERE {
?f a dbr:FilmFestival .
OPTIONAL{?f dbr:closingFilm ?o1}
OPTIONAL{?f dbr:openingFilm ?o2}
OPTIONAL{?f dbr:film ?o3}

}

CONSTRUCT {
?f a :frame-Hostile_encounter-hostility.n .
_:af1 a :frame-Death-die.v .
_:af1 :fe-Death-Sub_event ?f .
_:af1 :fe-Death-Protagonist ?o1 .
?f :fe-Hostile_encounter-Side_1 ?o2 .
_:af3 a :frame-Part_whole-part.n .
_:af3 :fe-Part_whole-Part ?f .
_:af3 :fe-Part_whole-Whole ?o3 .
?f :fe-Hostile_encounter-Place ?o4 .
?f :fe-Hostile_encounter-Result ?o5 .
?f :fe-Hostile_encounter-Depictive ?o6 .
?f :fe-Hostile_encounter-Side_2 ?o7 .

} WHERE {
?f a dbr:MilitaryConflict .
OPTIONAL{?f dbr:casualties ?o1}

OPTIONAL{?f dbr:combatant ?o2}
OPTIONAL{?f dbr:isPartOfMilitaryConflict ?o3}
OPTIONAL{?f dbr:place ?o4}
OPTIONAL{?f dbr:result ?o5}
OPTIONAL{?f dbr:strength ?o6}
OPTIONAL{?f dbr:opponents ?o7}

}

Below, we also present the translation of the
class Event in schema.org.

We omit the subclasses here, but these have very
few genuine properties, and therefore the special-
ization is relatively simple. Besides, the taxonomy
of schema.org events has some inconsistency is-
sues that makes its use complex: the Event class is
defined as capturing events such as concerts, lec-
tures, and festivals, with properties such as “typ-
ical age range”, but there are sub-events such as
UserInteraction and UserPlusOnes that actu-
ally represent a more general kind of events.

CONSTRUCT {
?f a :frame-Social_event-meeting.n .
?f a :frame-Event-event.n .
#
?f :fe-Social_event-Time _:timePeriod .
_:timePeriod a fbe:frame-Timespan-period.n ;
fbe:fe-Timespan-Start ?Osta ;
fbe:fe-Timespan-End ?Oend .

?f :fe-Event-Time _:timePeriod .
#
?f :fe-Social_event-Duration ?Odur .
?f :fe-Event-Duration ?Odur .
#
?f :fe-Social_event-Place ?Oloc .
?f :fe-Event-Place ?Oloc .
#
?f :fe-Social_event-Attendee ?Oatt .
?f :fe-Social_event-Host ?Oorg .
#
?f :fe-Social_event-Occasion ?Osup .
?Osub :fe-Social_event-Occasion ?f .
#
?Ooff a :frame-Offering-offer.v ;
:fe-Offering-Theme ?f .

#
?f a :frame-Performing_arts-performance.n ;
:fe-Performing_arts-Performer ?Oper ;
:fe-Performing_arts-Performance ?Owor .

#
_:af1 a :frame-Recording-record.v ;
:fe-Recording-Phenomenon ?f ;
:fe-Recording-Medium ?Orec .

#
?f :fe-Social_event-Descriptor ?Oeve .
#
_:af2 a Change_event_time-postpone.v ;
Change_event_time-Event ?f;
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Change_event_time-Landmark_time ?Opre.
#
_:af a :frame-Typicality-normal.a .
_:af :fe-Typicality-Entity _:af2 .
_:af2 :frame-Age-age.n .
_:af2 :fe-Age-Age ?Otyp .

} WHERE {
?f a sch:Event .
OPTIONAL{?f sch:startDate ?Osta}
OPTIONAL{?f sch:endDate ?Oend}
OPTIONAL{?f sch:duration ?Odur}
OPTIONAL{?f sch:location ?Oloc}
OPTIONAL{?f sch:attendee ?Oatt}
OPTIONAL{?f sch:organizer ?Oorg}
OPTIONAL{?f sch:superEvent ?Osup}
OPTIONAL{?f sch:subEvent ?Osub}
OPTIONAL{?f sch:offers ?Ooff}
OPTIONAL{?f sch:performer ?Oper}
OPTIONAL{?f sch:workPerformed ?Owor}
OPTIONAL{?f sch:recordedIn ?Orec}
OPTIONAL{?f sch:eventStatus ?Oeve}
OPTIONAL{?f sch:previousStartDate ?Opre}
OPTIONAL{?f sch:typicalAgeRange ?Otyp}
# No translation
OPTIONAL{?f sch:doorTime ?Odoo}

}

The only extension of the FrameBase
schema used for these examples was the frame
:frame-Timespan-period.n with the start and
end frame elements, used to denote periods of
time. This, however, is not an ad-hoc extension
motivated by a particular need of only one source
but a very general one. Of the 16 properties
of the Event class, only one (sch:doorTime,
with an official gloss “The time admission will
commence”) was not integrated. The remaining 15
were integrated.

Some integration rules, namely Property-Frame
rules as well as some complex Class-Frame rules,
declare new instances in the CONSTRUCT clause.
This can be achieved either by means of anonymous
nodes, as in the examples, or by coining new, essen-
tially skolemized IRIs. In any case, the integration
rules do not link or merge frame instances that are
created by different rules or different instantiations
of the same rule but should correspond to the same
n-ary relation. This is a later step for which an out-
of-the-box entity de-duplicator [39,42,64] could be
applied. What the integration rules provide are in-
stances of the same type that actually represent the
same thing (event, situation, process, i.e. frame), so
that the entities can actually be linked and – if the
de-duplication process has high enough precision –

merged, so the full efficiency indicated in Table 2
is achieved. This would not be possible with the
heterogeneous models in Figure 1.

6.2. Automatically Built Integration Rules

We have recently been able to devise basic Class-
Frame and Property-Frame integration rules us-
ing automatic methods guided with KB specific
heuristics, which have been tested for Freebase and
Yago[56]. To build Class-Frame integration rules,
a support vector machine is used to classify pairs
consisting of an external class and a FrameBase
frame class, using lexico-semantic features. The
support vector machine is trained with a manually
built gold standard for Freebase. In order to in-
crease precision, instead of using the SVM directly,
we use the scoring function from the SVM (the dis-
tance from the hyperplane) to filter the pairs clas-
sified as true, selecting the best candidate for each
external class. Then, for each mapped pair (c, f),
properties whose domain is c and frame element
properties whose domain is f are mapped using
lexical features and some heuristics based on fre-
quent names. To build Property-Frame rules, our
approach matches properties from external KBs
against FrameBase DBPs, substituting the DBP
in the ReDer rule with an external property that
creates a sufficiently good match. This is similar
to how Legalo [50] works for extracting relations
from hyperlinks surrounded by text. Again, some
heuristics are used for very frequent properties. Ta-
ble 6 shows the number of triples and frame types
integrated in FrameBase under this method.

Table 6
Number of statements and distinct frame types in the inte-
grated data, from YAGO2s and from Freebase. The numbers
in parentheses include the equivalent microframes that can
be obtained with RDFS inference.

YAGO2s Freebase

Reified
Number of triples 32,927,963 7,483,430
Instantiated frame types 186 (1634) 29 (130)

Dereified
Number of triples 3,933,207 6,120,201

The method described for creating Property-
Frame rules has also been extended by applying
a previous canonicalization to the properties from
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the external KB and creating additional ReDer
rules[55], as well as using a more advanced similar-
ity function with a weighted combination of lexical
and semantic features, and coreness features of the
FEs in FrameNet. The canonicalization addresses
certain common types of ambiguity in the names
of properties in LOD datasets, like the omission
of the verb. For instance, given a property named
“author”, it is not clear from the name alone if
it is meant as hasAuthor or isAuthorOf. These
problems are solved by a combination of linguistic
constraints and information from the schema (i.e.
domain, range, and symmetry). Also, instead of
using the Kuhn-Munkres algorithm for filtering
the many-to-many relation between DBPs and rei-
fied patterns as in Section 4.4, a max operator is
used to select the highest ranked reified pattern
for each DBP, but allowing each reified pattern to
be obtained from different DBPs.

The ability to create Property-Frame integration
rules towards FrameBase in this way, exploiting
its linguistic nature and its corpus of annotations,
is especially important. First, because traditional
ontology alignment systems cannot produce such
complex mappings, as was discussed in Section 2,
and therefore their recall will be effectively equal to
zero in this task. Second, because the same ontology
alignment systems can be re-used to create Class-
Frame rules (mapping classes with classes and prop-
erties with properties, if the ontology alignment
system allows declaring constraints related to the
properties’ domains). We will discuss the creation
of complex Property-Frame rules in Section 7.

Additionally, a demo system has been developed
that allows us to re-use these methods as search
and suggestion engines behind an intuitive GUI,
enabling human-level accuracy while minimizing
the effort for the user[57].

6.3. Querying

FrameBase facilitates novel forms of queries. The
query in Figure 16, for instance, uses reified pat-
terns to find the heads of the World Bank.
The results in Table 7 show example instances

integrated into the FrameBase schema from both
Freebase (rows 1–3, extracted from the second ex-
ample integration rule above) and YAGO2s (rows
4–5, extracted with a similar integration rule made
for YAGO2s) [56].

SELECT DISTINCT
?leader ?leaderLabel ?role ?roleLabel

WHERE {
?lumfi a :frame-Leadership-leader.n .
?lumfi :fe-Leadership-Governed ?worldBank.
?lumfi :fe-Leadership-Leader ?leader .
?leader rdfs:label ?leaderLabel .
VALUES ?worldBank {
yago:World_Bank freeb:m.02vk52z

}
OPTIONAL {
?lumfi :fe-Leadership-Role ?role .
?role rdfs:label roleLabel .

}
}

Figure 16. Example query using reified pattern.

Alternatively, if the triple :isSimilarTo
rdfs:subPropertyOf rdfs:subClassOf is added
with RDFS inference, then the microframe
:frame-Leadership-leader.n in Figure 16 can
be substituted with any of the microframes in the
cluster, as listed in Figure 17. This effectively helps
increasing recall.

:frame-Leadership-wn_lead_n_01256743
:frame-Leadership-lead.v
:frame-Leadership-wn_head_v_02729023
:frame-Leadership-chief.n
:frame-Leadership-wn_head_n_10162991
:frame-Leadership-principal.n
:frame-Leadership-leadership.n
:frame-Leadership-wn_headship_n_00593108
:frame-Leadership-wn_leader_n_09623038
:frame-Leadership-wn_leadership_n_05617310
:frame-Leadership-head.v
:frame-Leadership-leader.n
:frame-Leadership-wn_head_v_02440244
:frame-Leadership-head.n

Figure 17. Microframes from the cluster where
:frame-Leadership-leader.n belongs.

A DBP from the dereification rules can also be
used to obtain the same non-optional results, as
illustrated in the query in Figure 18. Either of
the verb-based DBPs leads or heads can be used
because the LU-microframes for these verbs are in
the same cluster as the nouns leader and head, and
there is a dereification rule between the Leader and
Governed FEs for both.

7. Towards Complex Integration

The methods described in Section 6.2 create ba-
sic Class-Frame and Property-Frame integration
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Table 7
Results from the query

?leader ?leaderLabel ?role ?roleLabel

freeb:m.0h_ds2s ‘Caroline Anstey’ freeb:m.04t64n ‘Managing Director’
freeb:m.0d_dq5 ‘Mahmoud Mohieldin’ freeb:m.04t64n ‘Managing Director’
freeb:m.047cdkk ‘Sri Mulyani Indrawati’ freeb:m.01yc02 ‘Chief Operating Officer’
yago:Jim_Yong_Kim ‘Ji, Yong Kim’ – –
yago:Robert_Zoellick ‘Rober Zoellick’ – –

SELECT DISTINCT ?leader WHERE {
?leader :dbp-Leadership-heads ?worldBank .
VALUES ?worldBank {

yago:World_Bank freeb:m.02vk52z
}

}

Figure 18. Example query using a dereified pattern.

rules. However, as some examples in Section 6.1 il-
lustrate, integration rules can become very complex.
In the following, we present instructive examples
of complex integration rules.

7.1. Complex Property-Frame Integration Rules

– FrameBase-driven. The first kind of these in-
volves extending an approach already explored
in existing FrameBase integration work[55],
creating very complex ReDer rules whose
DBPs could also be matched with external
properties. These DBPs could have, for in-
stance, a “(VP <VBZ> (NP <NP1> (PP
<IN> <NP2>)))” structure, as e.g. “devel-
opsUnderstandingOfContent” (see Figure 19)
or “startsDemolitionOfBuilding”, but other
more complex structures could be considered,
as well. Rules of this sort involve two frame
instances (one evoked by VBZ and the other
by NP1) and several challenges. In particular,
syntactically correct but semantically nonsen-
sical combinations should be filtered out, e.g.
“procrastinationDrunkByQuadruplicity”. This
could be achieved based on example sentences
in FrameNet. However, if the frames evoked
by the VBZ and NP1 are not annotated in the
same sentence, the correct pair of frames for
the pair of lexical units (VBZ, NP1) should
be obtained automatically, together with the
correct FE connecting both. This is a more
challenging disambiguation task.

?s dbp-Awareness-
developsUnderstandingOfContent ?o

l
f type frame-Progress-develop.v
f fe-Progress-Entity ?s
f fe-Progress-Post_state f’
f’ type frame-Awareness-understanding.n
f’ fe-Awareness-Cognizer ?s
f’ fe-Awareness-Content ?o

Figure 19. Example of a very complex noun-based ReDer
rule

An advantage of this approach is that it pro-
vides richer ReDer rules for FrameBase, but
the disadvantage is that because it is driven
by FrameBase, it may have poor recall for real-
world datasets, both because of its reliance
on FrameNet example sentences and because
of FrameNet’s non-specialized vocabulary, in-
stead of the kind of knowledge present in a par-
ticular knowledge base. This problem could be
significantly reduced by also updating the simi-
larity function between DBPs and source prop-
erties, in order to account for hypernymy and
synonymy relations that would allow capturing
very specific concepts in source KBs for which
hypernyms can be found in FrameBase (for
instance, “catalyzesChemicalReaction” from a
source KB could match the more general “in-
creasesSpeedOfProcess” created from Frame-
Base annotations).

– Source-data driven. Another approach would
involve parsing predicate names with a seman-
tic role labelling system, similar to Legalo [50].
However, such SRL systems are also con-
strained by their reliance on annotated exam-
ple sentences for training. In any case, an ad-
vantage of this approach is that if FrameBase
is extended with PropBank, SRL systems for
this could be used as well.
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7.2. Complex Class-Frame Integration Rules

There are multiple ways in which Class-Frame
rules can differ from their basic pattern. We will
use the examples in Section 6.1 to illustrate this.

1. Sometimes, a class integration rule may need
to instantiate multiple frames rather than just
a single one. We distinguish two main types
of this phenomenon.
a) The instantiated frame instances

may be connected by FEs. Ex-
amples of this include the frame
:frame-Timespan-period.n, created
to represent time periods, and the
subframes of Relative_time to express
precedence between events (all in the
example for dbr:Event). The same
applies when an FE is used to specify a
frame beyond the lexical unit (see the
rule for dbr:Space_exploration).

b) Several frames can also be evoked
separately, without the instances being
directly connected by any FE. When
these frames describe different per-
spectives of the same event, there is
the possibility that FrameNet links
them by means of perspectivization,
and therefore FrameBase can infer one
from another. In this case, inference is
possible because RDFS subclass and
subproperty properties are used in
FrameBase to reflect the perspectiviza-
tion relation between frame classes and
FEs respectively. Another example are
:frame-Receive_visitor_scenario
and :frame-Visit_host, which are per-
spectives of :frame-Visitor_and_host.
However, in other cases, one cannot
rely on existing inference. For in-
stance, one can observe that the rule
to translate Event from schema.org,
besides the frames Event-event.n and
Timespan-period.n, also instantiates
Performing_arts-performance.n,
Recording-record.v, and
Offering-offer.v, when certain
properties are present.

2. Another possible source of complexity is that
FEs can be inverted. In this case, the inte-

gration rules need to invert the order of the
arguments, as in the second occurrence of
:fe-Social_event-Occasion in the integra-
tion rule for the class Event in schema.org.

Arbitrary combinations of these phenomena are
possible, as, e.g., in the rule integrating the Event
class from schema.org.

A possible way to address this problem may be
by defining a reduced alphabet of transformations
over a basic Class-Frame rule, similar to our list
above, so that a complex Class-Frame rule can be
represented as a basic initial one followed by a se-
quence of transformations, and this representation
can be acquired via supervised learning.

However, the high number of variables involved
would mean that any attempt to train a system
would face extreme sparsity. Inter-annotator agree-
ment, which is already low for simple integration
rules [56], would probably be even lower. Investigat-
ing how to produce such genuinely complex rules
entirely automatically thus remains an important
research challenge.
In the short term, we believe that a combina-

tion of automated assistance and user feedback, as
provided by user interfaces such as Klint [57], may
be the best strategy whenever complex rules are
needed and high-quality integration is desired.

8. Conclusion

FrameBase is a novel approach for integrating
knowledge from different heterogeneous sources
and connecting it to decades of work from the NLP
community. It provides a flexible and homogeneous
model to describe n-ary relations, which combines
efficiency and expressiveness, and is based on a lin-
guistically sound foundation. The ties with natural
language can be exploited to automatically inte-
grate knowledge from external sources. FrameBase
opens up several new research directions, which we
enumerate next.

Integrating additional sources. Either using a uni-
fied approach[56] or focusing on Property-Frame
rules and combining them with existing ontology
alignment systems[55], additional sources could be
integrated. Both generic KBs such as Wikidata [16]
and domain-specific ones such as from the biomed-
ical domain could be incorporated.
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Interfacing from natural language. Due to its
use of linguistic resources for ontological purposes,
FrameBase has significant potential for text min-
ing and other natural language related tasks. Both
pure Semantic Role Labelling (SRL) systems for
FrameNet such as SEMAFOR [9] as well as text-to-
ontology systems such as FRED [49] and Pikes [7]
could be adapted to produce FrameBase data from
natural language text. Similar methods could also
enable question answering [38]. For example, for the
example in Figure 16 in Section 6.3, given the ques-
tion “Who has been the head of the World_Bank?”,
the SRL tool SEMAFOR [9] successfully extracts
the frame Leadership with lexical unit head.noun
and frame elements Governed and Leader. Based
on this, and after a named entity disambiguator
such as AIDA [30] has matched World_Bank to the
entities in the KBs, a structured query can easily
be built. Although accurate semantic role labeling
is still very challenging, semantics has become one
of the largest research areas in natural language
processing and thus FrameBase can benefit from
progress made in this area in the future.

Natural language generation. FrameBase also of-
fers opportunities for natural language genera-
tion from KBs. Dereification rules can be inter-
preted as syntactic templates[69] for simple En-
glish sentences without subordinate clauses. For in-
stance, :dbp-Statement-writesAboutTopic from
Figure 8 could be used to produce a natural lan-
guage representation “X writes about Y”. It would
be trivial to produce similar ternary syntactic tem-
plates for “X writes about Y in Z” (for Z being a
Time or a Date) and “X writes to Z about Y” (for
Z being the Addressee).

Implementing virtual querying. Currently, the in-
tegration rules for integrating source KBs into
FrameBase have been implemented as SPARQL
CONSTRUCT queries applied over the sources’
data, which can be used to materialize the inte-
grated knowledge. An alternative implementation
would involve virtual querying: using the integra-
tion rules to provide FrameBase-adapted virtual
views of the source KBs. This would make it pos-
sible to re-use existing SPARQL endpoints from
the different sources and enable access to the most
recent version of the source data.

Further information. Details and more informa-
tion about FrameBase are available at http://
framebase.org. The FrameBase data is freely
available under a Creative Commons Attribution
4.0 International license (CC-BY 4.0).
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