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Abstract
Multiscale modeling has yielded immense success
on various machine learning tasks. However, it has
not been properly explored for the prominent task
of information diffusion, which aims to understand
how information propagates along users in online
social networks. For a specific user, whether and
when to adopt a piece of information propagated
from another user is affected by complex interac-
tions, and thus, is very challenging to model. Cur-
rent state-of-the-art techniques invoke deep neural
models with vector representations of users. In
this paper, we present a Hierarchical Information
Diffusion (HID) framework by integrating user rep-
resentation learning and multiscale modeling. The
proposed framework can be layered on top of all
information diffusion techniques that leverage user
representations, so as to boost the predictive power
and learning efficiency of the original technique.
Extensive experiments on three real-world datasets
showcase the superiority of our method.

1 Introduction
The accurate prediction of information diffusion is benefi-
cial to a wide range of applications. For instance, it may
help in modeling user behavior such as clicks and com-
menting, so that user interest is better captured in recom-
mender systems [Leskovec et al., 2007; Xian et al., 2019].
It can also support persuasion campaigns targeting public
opinion [Nadeau et al., 2008], and bring similar advan-
tages to other tasks such as influencer identification and
viral marketing [Guille et al., 2013]. Information diffu-
sion is an incredibly well-studied topic. While traditional
stochastic probabilistic-based models dominated for many
years [Kempe et al., 2003; Leskovec et al., 2007], recent ad-
vances include deep diffusion models [Wang and Li, 2019;
Yang et al., 2019], which benefit from their robust general-
ization abilities. Nevertheless, how to accurately represent
the users to better capture the process of information diffu-
sion remains well-known as a difficult problem [Wang et al.,
2019]. Specifically, whether and when a user is likely to adopt
a specific piece of information may depend on a multitude
of complex interactions, of which the ultimate cause remains

unknown [Guille et al., 2013]. To tackle this, existing deep
models tend to adopt user representation learning. In this pa-
per, we propose a novel framework (Fig. 1) for these models
that boosts their performance and learning efficiency.

In particular, our work is motivated by the importance of
the user’s role in the information diffusion process [Wang
et al., 2019]. In order to capture the user diffusion be-
havior, previous works either devise complex custom mod-
els [Feng et al., 2018], or rely on external knowledge such
as the friendship network and user profile [Yang et al., 2019;
Lagnier et al., 2013], which is often less organized, anony-
mous, or inaccessible due to privacy policies [Mano and
Ishikawa, 2010]. Therefore, we seek to exploit the traces of
the user diffusion behavior themselves (i.e., diffusion paths),
from which we extract multiple aspects of user behavior.
The idea draws inspiration from recent achievements that
multiscale modeling has made on various machine learning
tasks [Alber et al., 2019]. Data from the real world can
naturally be encoded at multiple scales, which can serve as
rich and reliable resources for feature representations in deep
learning. There is an urgent need for the deep models to ex-
ploit these implicit multiple scales. However, the exploration
of multiscale modeling in information diffusion has largely
been neglected. Against this background, we explore multi-
scale modeling in a user representation learning framework.
The challenges are mainly three-fold: (1) how to discover
and induce multiple scales, and at the same time preserve
the individual behavior patterns in the original data while
the scales are implicit; (2) how to transfer knowledge among
multiple scales in an efficient and effective way; and (3) how
to design generalizable strategies that apply to most state-of-
the-art diffusion models.

To address the above-mentioned problems, we propose the
Hierarchical Information Diffusion (HID) framework. Our
method has several appealing properties, most notably:
• HID aids the learning of user representations, with mul-

tiple scales of summarization over the diffusion paths.
This is accomplished through upscaling, by means of
grouping the users and then coarsening the diffusion
paths at each scale. A k-order diffusion proximity ma-
trix is proposed to support this. Fewer users and activ-
ities at the coarsened scale also brings about efficiency.
• Downscaling achieves an exchange of knowledge about

users across scales, inspired by studies on artificial neu-
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Figure 1: Methodology overview. Left: Framework overview of HID with a toy example. Numbers next to the arrow indicate the order of the
algorithm workflow. Right: The UPSCALING procedure for generating multiple scales of information diffusion data corpus.

ral networks revealing that the importance of a neuron
for the model performance correlates with the extent to
which its weight distribution after training differs from
the initialization [Meyes et al., 2019].
• Combining upscaling and downscaling yields a hierar-

chical learning framework that has the potential to group
inactive users with others, so that more cycles of opti-
mization are gained for the inactive users compared to
sampling-based optimization without multiscaling.

Contribution. We propose HID1 for information propaga-
tion in online networks. To the best of our knowledge, this
is the first method to integrate user representation learning
and multiscale modeling. HID captures the multiscale infor-
mation adoption proximity between users, and can be layered
on top of all existing information diffusion techniques with a
user vector representation learning component. Through ex-
tensive experiments, we showcase the benefits of multiscale
learning on 3 real datasets. Our method yields substantially
higher predictive power and learning efficiency, and achieves
empirical gains of up to 14.76% MAP score.

2 Related Work
Information Diffusion with User Representations. [Bouri-
gault et al., 2014; Bourigault et al., 2016; Gao et al., 2017]
utilize representation learning to predict unseen diffusion.
[Feng et al., 2018] further consider network structure and user
interest similarity. [Singh et al., 2017] learn user representa-
tions with a novel path sampling procedure to gather contexts
for each user. [Wang et al., 2019] learn network regularized
role-based user representations. [Zhang et al., 2018] learn
user embeddings while regularizing the information diffusion
process using community structures. [Yang et al., 2018] em-
ploy an attention mechanism and convolutional network with
a user embedding layer. [Wang et al., 2018] employ a recur-
rent network with a user embedding layer and explore both
diffusion paths and graph by structure attention.

1https://github.com/hongluzhou/HID

Multiscale Representation Learning. Multiscale represen-
tation learning for information diffusion is unexplored. [Yang
et al., 2019] jointly handle both micro- and macroscopic pre-
diction, and [Wang and Li, 2019] adopt a hierarchical atten-
tion mechanism. Both models can benefit from HID. Addi-
tionally, [Zhang et al., 2017] capture hierarchical community-
level information diffusion, but as a probabilistic model. Mul-
tiscale representation learning for graphs, in contrast, has
recently received substantial attention [Yang et al., 2017;
Shen and Chung, 2017; Sang et al., 2019; Morris et al., 2019;
Chen et al., 2018; Perozzi et al., 2017]. Though closely
related, we show that multiscale graph representation tech-
niques fail to tackle information diffusion in Sec. 5.1.

3 Method
3.1 Notations and Definitions
An online social network (OSN) can be described as a plat-
form that permits its users to share information [Guille et al.,
2013]. Formally, the set of users that an OSN has is denoted
as V. A corpus D is a set of diffusion paths, typically ex-
tracted from an OSN and generated by its |V| users during
the information-sharing process. Our predictive task is infor-
mation diffusion.
Definition 1. (DIFFUSION PATH): A sequence of non-repetitive
users who have shared a certain information unit, denoting
the ordered user path capturing the order in which the users
of the OSN adopted the piece of information.

Definition 2. (INFORMATION DIFFUSION): Given |V| users and a
corpus Dtrain , the task aims to complete the diffusion paths
in the corpusDtest with users in V. The first user (i.e., source
user) of each diffusion path in Dtest is known.

Popular deep learning-based approaches commonly model
information diffusion with user representation learning. We
define a user representation as a mapping Φ : v ∈ V 7→
Rd, which maps every user to a d-dimensional vector in the
Euclidean space (d� |V|). In practice, Φ is a |V| × d matrix
estimated from a training corpus.
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Algorithm 1 HID(s, p, d,Dtrain,F)

Input:
the number of coarse scales s
the coarsening rate between adjacent two scales p
the user embedding dimensionality d
an arbitrary information diffusion algorithm that leverages
user representations F
a corpus Dtrain with user set V
Output: latent representation of users Φ : v ∈ V 7→ Rd

1: D0 ← Dtrain

2: D1, D2, . . . , Ds ← UPSCALING(s, p,D0)
3: Initialize Φs
4: Φs ← INFDIFF(Φs,Ds, d,F)
5: for i = s− 1 to 0 do
6: Φi ← DOWNSCALING(Φi+1,Di,Di+1)
7: Φi ← INFDIFF(Φi,Di, d,F)
8: end for
9: Φ← Φ0

10: return Φ

3.2 Problem Formulation
We desire to learn Φ, a latent representation of users, to bet-
ter predict information diffusion. Current approaches for esti-
mating Φ suffer from two main disadvantages: (1) the multi-
scale property is not considered, and (2) their stochastic opti-
mization can easily fall into local minima due to troublesome
initial configurations. In light of these deficiencies, we intro-
duce hierarchical user representation learning for modelling
information diffusion in an OSN:

Given the number of coarse scales s, simplify the corpus
Dtrain to a series of successively coarser corpora, D1, D2,
. . . , Ds, with respective user sets V1, V2, . . . , Vs (|V| >
|V1| > · · · > |Vs|). Learn the corresponding family of
user representations Φ1, Φ2, . . . , Φs and then obtain the
finest-granularity user representation Φ to predict the diffu-
sion paths in Dtest.

3.3 Proposed Approach
Algorithm 1 outlines the overall HID approach. Our under-
lying method is general and can be applied to any technique
for information diffusion that leverages user representations.
We denote the information diffusion algorithm that can bene-
fit from HID as INFDIFF. The INFDIFF procedure will learn
user representations and predict information diffusion.
Upscaling. We present UPSCALING in Algorithm 2. The
upscaling process achieves a successive abstraction over the
users. Abstraction is done such that the coarser scale will
have fewer users, but the key characteristics of the diffusion
paths are mostly retained. Specifically, the change in diffu-
sion paths is minimized and the user ordering is preserved.

Consider a corpus Dtrain of an OSN represented as a dif-
fusion graph G = (V,E), where each node is a user in V and
there is a directed edge pointing from node i to node j for ev-
ery ordered successive user pair (user i, user j) in the corpus
Dtrain. Accordingly, each diffusion path can be viewed as a
path in this diffusion graph G.

Recall that [Qiu et al., 2018; Perozzi et al., 2017] have
shown that popular graph embedding approaches are implic-
itly factoring a matrix containing entries of A1,A2, . . . ,Ak,

where k is the window size over the random walk, and the
entry Akij is the number of paths between nodes i and j of

length k. We define matrix Ã
m,k

, a |V|× |V|matrix, for each
diffusion path, representing the adjacency matrix of diffusion

path m with step size k. Entry Ã
m,k

ij is the number of times
that the ordered pair of user i and user j with step k appeared
in the diffusion path m, and thus can only be 1 or 0.

In this paper, the multiscale property serves the following
functions: (1) capturing directed as well as both local and
long-distance information adoption proximity between two
different users, and (2) the consideration of distinct connec-
tions of information adoption patterns in terms of different
transitional orders and diffusion paths. To capture the mul-
tiscale property of a corpus Dtrain, we define the following
k-order diffusion proximity matrix:

A =

|Dtrain|∑
m=1

l∑
k=1

Ã
m,k

+

|Dtrain|∑
m=1

l∑
k=1

Ã
m,k

T

, (1)

where |Dtrain| is the total number of diffusion paths in Dtrain

and l is the maximum possible step size in Dtrain (i.e., the
length of the longest diffusion path minus one). The step of
calculating A is called ObtainProximity. A accounts for
the bi-directional co-occurrence patterns of users along diffu-
sion paths, and may be decomposed or transformed, with sub-
components having a genuine practical interpretation, e.g.,

An =

|Dtrain|∑
m=1

τ∑
k=1

Ã
m,k

, (2)

where τ is a pre-defined neighborhood threshold (τ < l) and
thus An considers neighboring patterns in terms of similar
information adoption time of users. Further,

Ao =

|Dtrain|∑
m=1

[
iem ·

l∑
k=1

Ãm,k
em

]
, (3)

where em is the source user’s index in Φ of diffusion path
m, and iem is a |V|-dimensional vector, which serves as an
indicator function (having a 1 in the em-th entry and 0s else-
where). In this manner, Ao considers patterns of whether a
user would diffuse information originating from another user.
UPSCALING groups users to form hyper-users via cluster-

ing. UPSCALING operates in a bottom-up manner across all
scales, and at each scale, users who have similar adoption pat-
terns would form a hyper-user. Based upon A at scale i, we
apply UpscalingOperator to form hyper-users at scale i+1.
Possible upscaling operators include Hierarchical Agglomer-
ative Clustering (HAC), Spectral Clustering, K-means, etc.
The number of users at scale i + 1 is defined by p, i.e., the
coarsening rate between adjacent two scales, and is calculated
as the number of users at scale i divided by p.

The RewriteCorpus procedure then updates the corpus
Di and obtains Di+1 by replacing user ID at scale i with the
corresponding hyper-user ID at scale i + 1, while ensuring
the resulting diffusion path is still valid. Since we want to
make sure the change in diffusion paths is minimized and
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Algorithm 2 UPSCALING(s, p,Dtrain)

Input:
the number of coarse scales s
the coarsening rate between adjacent two scales p
a corpus Dtrain with user set V
Output: a series of successively coarser corpora,D1,D2, . . . ,
Ds

1: D0 ← Dtrain

2: for i = 0 to s− 1 do
3: Ai ← ObtainProximity(Di)
4: Vi+1 ← UpscalingOperator(Ai,Vi, p)
5: Di+1 ← RewriteCorpus(Di,Vi,Vi+1)
6: end for
7: return D1, D2, . . . , Ds

the user ordering is preserved, we only consider the first oc-
currence of every hyper-user. In addition, if the number of
users on a coarsened diffusion path is less than 3, we discard
that diffusion path, because many diffusion models require
at least 3 users on a diffusion path [Bourigault et al., 2014;
Gao et al., 2017]. Corpora D1, D2, . . . , Ds is thus obtained.
Downscaling. The DOWNSCALING process maps a coarser
user representation Φi+1 at scale i+ 1 to its subsequent finer-
grained user representation Φi at scale i, which is used as the
initialization point for learning the finer-grained user repre-
sentation. Specifically, for each user at scale i, DOWNSCALING
finds the user’s corresponding hyper-user at scale i + 1, then
assigns the learned hyper-user’s representation (returned by
INFDIFF) as that user’s initial representation. DOWNSCALING
transfers the knowledge of user representations across scales,
and thus provides good initializations for learning, effectively
avoiding troublesome configurations that are more prone to
local minima in non-convex optimization [Chen et al., 2018].

4 Experimental Setup
We apply HID to current deep learning-based information dif-
fusion models that involve user representation learning. For
each, we compare accuracy and efficiency changes, with and
without applying HID. In addition, HARP and Walklets are
multiscale graph representation techniques to compare the
multiscale representation learning aspect.

4.1 Baseline Methods
CDK [Bourigault et al., 2014] induces user embeddings such
that users contaminated earlier are closer to the source user
than users contaminated later or not contaminated.
CSDK [Bourigault et al., 2014] generates user embeddings
such that users contaminated first are closer to the source user
after applying the information embedding as an offset, than
users contaminated later, or not contaminated at all.
Forest [Yang et al., 2019] is a deep diffusion model based on
reinforcement learning (RL). RL incorporates the diffusion
size information into the recurrent neural network model.
HARP [Chen et al., 2018] is a method for learning node em-
beddings of a graph by compressing the input graph prior to
embedding it. HARP is a meta-strategy, proven to improve
the state-of-the-art algorithms for embedding graphs.
Walklets [Perozzi et al., 2017] is an approach for learn-
ing multiscale representations of nodes in a graph, by sub-
sampling short random walks (i.e., “skipping” over steps).

Dataset Memetracker Twitter Digg

Number of Users 994 1, 222 500
Number of Links 32, 652 166, 889 486, 354

Number of Diffusion Paths 4, 319 9, 761 3, 553
Avg. Diffusion Path Length 8.56 18.10 137.89

Table 1: Statistics of datasets used in our experiments.

4.2 Datasets
Three real datasets are used. Table 1 gives the statistics.
Memetracker [Leskovec et al., 2009]. This corpus contains
blog posts and Web news article from August 1, 2008 to April
30, 2009, and is often used for research on information dif-
fusion [Bao et al., 2016]. Each website or blog is considered
as a user. We consider a subset with roughly one thousand of
most active users. Such filtering is common for fast verifica-
tion of model performance [Wang et al., 2019].
Twitter [Yang and Leskovec, 2011]. This dataset retrieves
Twitter tweets from June 1, 2009 to December 31, 2009. For
each tweet, author, time, and content (i.e., information) are
available. We consider users with at least 600 tweets and then
discard diffusion paths with fewer than 10 users.
Digg [Hogg and Lerman, 2012]. This dataset contains sto-
ries promoted to Digg’s front page over a period of a month
in 2009. For each story, all Digg users who have voted for
the story up to the time of data collection are captured. We
consider the 500 most active users.
4.3 Evaluation Metrics
For each dataset, the set of diffusion paths is randomly split
into two parts: 80% for training and validation (Dtrain), and
the remainder for testing (Dtest). We evaluate the perfor-
mance through the widely adopted metric Mean Average Pre-
cision (MAP)2 [Bourigault et al., 2014; Bourigault et al.,
2016; Wang and Li, 2019], computed as

MAP =
1

|Dtest|
∑

t∈Dtest

∑|t|
k=1 P@k × isInfected(k)

|t|
, (4)

where t is a diffusion path in Dtest, and P@k is the preci-
sion at rank k, i.e., the percentage of infected users among
the top k users. isInfected(k) is 1 when the k-th user truly
participates in this diffusion path, and 0 otherwise.
4.4 Parameter Settings
The hyper-parameters are chosen based on validation perfor-
mance. For CDK, the maximum training epoch was 8, 000
and per epoch the number of samples was 5, 000. The ini-
tial learning rate was 0.01 with a decay of 1× 10−6. CSDK
shared the same parameters, except 10, 000 for the number
of samples per epoch and 1× 10−12 for decay. For Forest,
HARP, and Walklets, we used the parameters suggested by
the authors. Forest used a maximum training epoch of 24.
We built the diffusion graph (Sec. 3) for HARP and Walklets.
Since the friendship network of Digg is available, we also
tried the friendship network, reporting whichever gave better
results (diffusion graph for HARP and friendship network for

2Additional metrics such as Area Under the Receiver Operating
Characteristic Curve were computed, but we opted not to report due
to the similar trend that all metrics indicate and limited space.
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Figure 2: Parameter sensitivity analysis showing the upscaling effect on the original corpus (a) and on HID performance (b). The dotted
horizontal line in cyan shows the MAP score achieved by the baseline CDK (i.e., before applying HID). The first 3 scales tend to affect the
corpus the most, but are most likely to achieve improvements. Less than 10% of users remain after 4 scales when p = 2, suggesting the critical
point for coarsening. The extent of coarsening varies across datasets, which implies the level of difficulty for HID to bring improvements on
the dataset (less affecting the number of diffusion paths, easier to bring improvements, e.g., Digg and counterexample Twitter).

Walklets). We used the HARP algorithm type that gave the
best performance. Specifically, HARP(node2vec) for Meme-
tracker, HARP(LINE) for Twitter and HARP(DeepWalk) for
Digg. Using HARP and Walklets, during the prediction, we
rank the source user’s neighbors according to the Euclidean
distance in the user representation space (same technique in-
troduced in CDK). To ensure a fair comparison, we reduced
the number of training epochs for the HID enhanced version,
according to the parameter s. Specifically, if the maximum
training epoch of the baseline is e, the HID enhanced version
uses e/(s + 1). The same set of the above hyper-parameters
was used for all datasets. The user representation dimension-
ality was 64. HID requires two hyper-parameters, s and p.
For results in Table 2, different values of s in {1, 2, 3} and
different values of p in {1.2, 1.5, 2, 3, 4} were tried with a
grid search using the validation data before choosing the best-
performing settings, which in general vary across datasets,
baseline techniques, and the upscaling operators. How these
two hyper-parameters affect HID is discussed in Sec. 5.2.

5 Evaluation
5.1 Results
We present the results in Table 2. HID consistently pro-
duces better results than all compared methods. On Meme-
tracker, the relative gains of HID over CDK, CSDK, and For-
est are 6.1%, 4.34%, and 4.72%, respectively. On Twitter, the
baselines tend to perform very well with high MAP scores
(e.g., CDK has a MAP score of 0.5763). Still, HID is able
to bring performance gains. On Twitter, the improvements
introduced by HID(CDK), HID(CSDK), and HID(Forest) are
3.61%, 2.47%, and 2.16%. Given the long diffusion paths

of Digg (see Table 1), upscaling succeeds at preserving the
characteristics of the original corpus (Fig. 2), which provides
more opportunities for HID to be effective. The gains are
particularly striking on Digg: HID(CDK), HID(CSDK), and
HID(Forest) outperform the baselines by 14.75%, 3.28%, and
12.6%, respectively. The somewhat more modest gain of
HID(CSDK) on Digg might stem from the additional learning
of information representations, which plays a dominant role
in CSDK’s diffusion modeling process. The improvements
introduced by HID are statistically significant: every experi-
ment is repeated 5 times to ensure the reliability of our results,
and we consistently see higher accuracy with our framework.

In Table 2, results on different upscaling operators are also
demonstrated. In most cases, HAC yields the best results, and
occasionally, is significantly better than K-means and Spec-
tral Clustering (e.g., on Digg). This might be because HID op-
erates in a hierarchical way, which accords with HAC. Spec-
tral Clustering tends to give the lowest performance gains.
Spectral clustering treats the data points as vertices of a graph,
and connects vertices that are close enough. Noisy online
data without well-separated connected components might be
the reason why Spectral Clustering is less suitable.

We also compare HID with HARP and Walklets in Ta-
ble 2. HARP and Walklets are multiscale graph represen-
tation learning techniques. Between the two, HARP gives
the better results. However, suffering from the closed-world
assumption [Guille et al., 2013], neither of them are able
to effectively tackle the prediction task of information dif-
fusion. On the 3 datasets, HARP and Walklets give worse or
only comparable results to CDK, CSDK, and Forest, which
are algorithms designed for information diffusion and avoid
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Algo Memetracker Twitter Digg
MAP Gain MAP Gain MAP Gain

CDK 0.1852 N/A 0.5763 N/A 0.1397 N/A
HIDH 0.1965? 6.1 0.5971? 3.61 0.1603? 14.75
HIDK 0.1899? 2.54 0.5885? 2.12 0.1455? 4.15
HIDS 0.1855 0.16 0.5773 0.17 0.1451∗ 3.87

CSDK 0.2074 N/A 0.5712 N/A 0.1492 N/A
HIDH 0.2164? 4.34 0.5844? 2.31 0.1541∗ 3.28
HIDK 0.2098∗ 1.16 0.5804∗ 1.61 0.1516∗ 1.61
HIDS 0.2082 0.39 0.5853? 2.47 0.1501 0.6
Forest 0.3244 N/A 0.5915 N/A 0.1500 N/A
HIDH 0.3397? 4.72 0.6019? 1.76 0.1689? 12.6
HIDK 0.3376? 4.07 0.6043? 2.16 0.1583? 5.53
HIDS 0.3296? 1.6 0.6029? 1.93 0.1564? 4.27

HARP 0.1704 99.35? 0.5745 5.19? 0.1376 22.75?

Walklets 0.1581 114.86? 0.5744 5.21? 0.1208 39.82?

Table 2: Performance on test data and gains of HID in percentage
(bolded). Results of the compared methods are in italics. Subscript
of HID shows the upscaling operator, where ‘H’, ‘K’, and ‘S’ stands
for ‘HAC’, ‘K-means’, and ‘Spectral’ Clustering. Gains of HARP
and Walklets are calculated using the best HID result. Every experi-
ment is repeated 5 times and the mean metric value is reported. (∗,?)
indicates statistically superior performance to the compared method
at a significance level of (0.05, 0.001) using a standard paired t-test.

the need of a pre-defined graph. Approaches requiring a pre-
defined graph are said to be limited in terms of their ability
to explain future diffusion and are less optimal [Bourigault
et al., 2014; Gao et al., 2017]. Based upon the above, HID,
a framework for enhancing information diffusion techniques,
gives superior performance compared to HARP and Walklets.

5.2 Parameter Sensitivity
HID involves 2 parameters: the number of coarse scales s and
the coarsening rate p. Using CDK as the baseline with HAC,
we examine how different choices of s and p affect the extent
of coarsening on the original corpus and HID performance.

We show the effect on the original corpus in Fig. 2 (a).
The first column reports the effect on the relative total num-
ber of users and diffusion paths, i.e., the ratio of the number
of users/diffusion paths of the coarsened scale to that of the
original corpus, with varied values of s when p = 2; and the
second column shows the same but with varied values of p
when s = 1. The first 3 scales tend to affect the corpus the
most. Fewer than 10% of users remain after 4 scales when
p = 2, and approximately only 20% remain when p is greater
than 5 with s = 1, both indicating the critical point that might
suffer from performance loss. The level of coarsening varies
across datasets, which implies the level of difficulty for HID
to bring improvements. Among the 3 datasets, s and p tend
to affect Twitter the most, which explains why improvements
on Twitter are relatively hard to achieve (Sec. 5.1).

We measure HID performance on the testing set as a func-
tion of s and of p in Fig. 2 (b). With regard to s, the perfor-
mance of HID first improves as s increases, then decreases as
s keeps increasing. The performance is expected to increase
when coarsening is appropriate. In HID, the coarsening oper-
ates over the users. The coarse scale learns initial user rep-
resentations for the finer scales, so a suitable extent of coars-

Figure 3: Efficiency comparison between methods and their MAP
scores. The number after “HID” is the value for s. HID is always
more efficient as s increases. A trade-off between efficiency and
effectiveness is sometimes observable when s is greater than 1.

ening with an adequate coarsening strategy will ensure the
characteristics of users’ behavior are preserved in the coars-
ened scales. When s becomes too large, the number of users
and diffusion paths remaining in the coarsest scale will be
too small to serve as a summary of the original corpus. This
is why the performance would decrease afterwards, which is
not surprising. Similarly, we observe that there is a range of
acceptable values for p, after which p becomes too large and
destroys the original patterns that are crucial for information
diffusion prediction. Both parameters have a fairly high im-
pact on the performance. The range of best s (or p) can be
implied by Fig. 2 (a). E.g., on Memetracker, the critical point
for s to affect the original corpus is around 4, hence, as shown
in Fig. 2 (b), the range of best s is from 1 to 4. Practitioners
can use Fig. 2 (a) to facilitate the selection of s and p.
5.3 Scalability
In Fig. 3, we compare the run time of HID and other tech-
niques. All models run on a single machine with 256 GB
memory, 48 CPU cores at 2.30GHz, and an NVIDIA Quadro
K6000 graphics card. Though sharing the same total number
of training epochs, HID is always more efficient compared
to the baseline, and becomes more efficient as s increases.
This is because fewer users and activities are involved at the
coarsened scales. The run time decreases almost linearly with
respect to the remaining corpus size. A trade-off between ef-
ficiency and performance is sometimes observed when s > 1
(e.g., Twitter). Still, HID can be a valuable tool for large-scale
online networks due to its substantial scalability.

6 Conclusion
This paper presents a novel hierarchical framework for the
task of information diffusion. The proposed framework HID
can be layered on top of all information diffusion techniques
that leverage user representations. HID facilitates more effi-
cient learning and accurate prediction. Extensive experiments
show the superior performance. In the future, we hope to ex-
tend HID to model additional aspects (e.g., information repre-
sentations, combination of different upscaling operators, mix
of knowledge by downscaling) so as to obtain even further
improvements.
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