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Abstract
We consider the task of knowledge fusion, an important aspect of cognitive intelligence, with the goal of combining part-
of knowledge drawn from different sources. For this, entities and relations are cast into matrix-based representations.
Unlike previous work on relation prediction, we consider the challenging setting of graphs with large amounts of completely
separate connected components and no overlap between the training and test set entities. In order to address these challenges,
we propose a novel cognitively inspired factorization method that jointly factorizes a subject–predicate–object tensor via
RESCAL and a similarity matrix via matrix factorization. Our experimental results show that our method significantly
outperforms several strong baseline models, including RESCAL and several TransE-style models. The proposed joint
factorization of a subject–predicate–object tensor while applying matrix factorization to a similarity matrix obtains
substantially higher average accuracy rates than previous approaches. This shows that it can successfully address the
challenge of knowledge fusion of disconnected data.

Keywords Knowledge fusion · Connected components · Entity overlap · Tensor factorization · Word similarities

Introduction

In the last decade, substantial progress has been made in
cognitive computing [38], and much of this has rested
on the ability to draw on large amounts of data to
overcome the traditional knowledge acquisition bottleneck.
Such knowledge can be provided in more explicit forms,
drawing for instance on the emergence of large knowledge
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graphs, or can be mined from unstructured sources using
machine learning and information extraction. Despite the
substantial growth of available knowledge, downstream
applications often need to cull pertinent information from
multiple sources, because no single source is sufficiently
comprehensive. This is not only true for information mined
from text, but also often applies to crowdsourced and
other kinds of data. In practice, disparate sources tend
to have heterogeneous distributions and properties, which
means that it is non-trivial to suitably combine information
across sources, a problem that is often referred to as
knowledge fusion [31]. This is akin to how humans acquire
knowledge from multiple sources and may need to figure
out how they fit together, and at times also determine
which source is more likely to be correct. Knowledge
fusion is important whenever one wishes to draw on
multiple sources, and has found application in massive
information retrieval, knowledge management, e-learning,
and knowledge acquisition, among others [41]. It can also
serve as a means of discovering and cleaning errors present
in individual knowledge sources [9].

In this paper, we focus on the fusion of knowledge
pertaining to the part-of relation, which reflects prototyp-
ical mereological relationships between objects, such as
between wheel and bicycle. Such knowledge is an essen-
tial form of commonsense knowledge, given its prominent
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role in enabling us to understand the composition of the
world. These sorts of relationships are also of prime impor-
tance in lexical semantics, and, thus, can be sourced from
lexical resources providing meronymic information, such as
WordNet [11], from resources mined from text and images,
such as PWKB [36], from crowdsourced data, such as Visu-
alGenome [18], or from large knowledge graphs, such as
GeoNames.1 Although part-of relationships are abundant
in such sources, the underlying definitions are inconsistent.
Given a generic part-of relationship from one data source,
we may not know specifically which kind of part-of rela-
tionship holds. Thus, knowledge fusion in this case entails
discerning between different sorts of relationships that are
easily confused.

This form of knowledge fusion bears a relationship
to the task of knowledge graph completion, which
focuses on the prediction of missing knowledge. In recent
years, embedding-based approaches for knowledge graph
completion have excelled at the task, exhibiting both
strong generalization capabilities and robustness. Two
main groups can be distinguished: tensor factorization
approaches such as RESCAL [27] and translation-based
models such as TransE [3] and its numerous variants (as
discussed in Section “Related Work”). We show that neither
framework can effectively cope with our knowledge fusion
task, which involves graphs that harbor large numbers of
completely separate connected components, lacking any
overlap between the entities from training and test sets. We
will expound on this in further detail in Section “Problem
Definition”.

To overcome the aforementioned challenges, we propose
a cognitive-inspired joint decomposition of a subject–
predicate–object tensor and a similarity matrix. The main
contributions of this paper are as follows:

– We put forward a new task and corresponding datasets
in the area of knowledge fusion, aiming at the important
challenge of integrating knowledge graphs with large
amounts of isolated connected components, with non-
overlapping training set and test set entities.

– We propose a cognitively inspired method that exploits
a similarity matrix as side information, providing a link
between entities in the graph. The proposed method
fuses the graphs via joint factorization of the tensor
and the similarity matrix, optimized via an Alternating
Direction Method of Multipliers strategy.

– In our experiments, we evaluate our method against
state-of-the-art baselines. The results show that our pro-
posed method substantially outperforms all baselines in
terms of the achieved accuracy levels.

1http://www.geonames.org/

RelatedWork

Knowledge Fusion Knowledge fusion is a long-standing but
increasingly important problem, which aims at identifying
a true and coherent set of knowledge in the form
of subject–predicate–object triples given input triples
extracted from heterogeneous knowledge bases [8]. There
has been substantial research in this broad area of inquiry.
For example, Nengfu et al. [26] proposed a rule-based
knowledge fusion method, which provides its answers
by combining different answers from different sources,
and developed fusion methods to select rules that meet
specific user preferences. Dong et al. [8] proposed adapting
traditional data fusion techniques, including voting and
Bayesian analysis methods, to the task of knowledge fusion.
Their work at Google aimed at building a large-scale
Knowledge Vault using a multi-source knowledge fusion
method based on supervised learning [7]. Thoma et al. [37]
introduced an approach for cross-modal knowledge fusion
that integrates visual and textual latent representations
with embeddings of knowledge graph concepts. Our paper
studies a distinct setting, where the goal is to fuse
knowledge while distinguishing different kinds of relations.

Knowledge Graph Completion In recent years, there has
been substantial research on knowledge graph completion.
The well-known TransE method [3] maps entities to
vectors and regards relations r as translations from a
head entity h to a tail entity l. Based on TransE, a
number of improved models have been proposed, such as
TransH [39], TransR [22], CTransR [23], PTransE [21],
and TranSparse [14]. Specifically, TransE attempts to make
h + r and l be as close as possible by adjusting the
vectors for the head h, relation r , and tail l. In order to
better model N–1, 1–N , and N–N relations, the TransH
method [39] instead models relations as hyperplanes with
an associated translation operation. TransE and TranH
both embed the entities and relations into the same
space. The TransR [22] method instead considers separate
entity and relation spaces to better capture the differences
between entities and relations. Based on TransR, Lin et
al. proposed the CTransR [23] model, which clusters
and groups the head–tail entities. PTransE [21] is based
on relation paths, exploiting possible paths of linking
the two entities as features to predict the relation. Ji
et al. [14] proposed TranSparse to solve the challenge
of heterogeneous and unbalanced objects (entities and
relations) in a knowledge graph. The KG2E method [13]
uses Gaussian distributions to reflect the data uncertainty
and improve the link prediction accuracy. An alternative
direction is to focus on tensor or matrix decomposition. In
particular, [28] factorized the large YAGO 2 core ontology
using a technique called RESCAL [27], a restricted Tucker

http://www.geonames.org/
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decomposition for link prediction. He et al. [12] proposed
a Bayesian neural tensor decomposition approach to model
the deep correlations or dependency between the latent
factors in knowledge base completion. As we show, most
such methods struggle when faced with graphs that consist
of numerous separate connected components.

Tensor Decompositions Standard matrix factorization
approaches have been generalized to tensor factorization for 3-
dimensional data. There are two main algorithms for tensor
decomposition [17]: CP (CANDECOMP/PARAFAC) [16]
and Tucker decomposition [6, 42]. Besides these, IND-
SCAL [35], PARAFAC2 [5], and PARATUCK2 [10] are
further classic algorithms for tensor decomposition. In
terms of applications, Dong et al.’s work on the Google
Knowledge Vault [7] relied on tensor low-rank decompo-
sitions for link prediction. Liu et al. [24] propose a neural
model connecting neural networks with a Bayesian tensor
decomposition to effectively model complex nonlinear
relationships. Solé-Casals et al. [34] use tensor completion
applied to electroencephalography data to improve the clas-
sification performance in a motor imagery brain–computer
interface system with corrupted measurements.

However, simple tensor decompositions are unable to
cope particularly well with graphs that contain numerous
separate connected components. Hence, we rely on a
joint decomposition method that exploits additional side
information. An approach related to this is that of Acar et
al. [1], who formulate a data fusion model via the Coupled
Matrix and Tensor Factorization (CMTF) framework,
in which the model uses CP decomposition. However,
according to our experimental results, CP decomposition is
less appropriate for our model.

ProblemDefinition

Setting

As an important component in cognitive intelligence,
knowledge fusion aims to solve the task of integrating a
large amount of knowledge from heterogeneous sources.
In this paper, we focus on the integration of mereological
knowledge, i.e., of part-of relationships. The part-of
relation is one of the most fundamental ones both in formal
ontology and in cognitive science, while meronymy is of
prime importance in lexical semantics. Unfortunately, the
part-of relationship is also particularly challenging, because
one can in fact distinguish several different kinds of part-of
relationships.

In particular, we consider the physicalPartOf relation-
ship data from PWKB [36], as well as pertinent part-
of relationships from VisualGenome [18], WordNet [11],

and GeoNames as knowledge sources. VisualGenome has
many noisy triples, and several different sorts of relation-
ships, including has-a, is-a, located-in, and orientation-
based labels (e.g., in, on, behind). Some relations in Visu-
alGenome are overlapping, such as the two relations on
face of and part of in triples such as (nose, on face of,
dog) and (nose, part of, dog). GeoNames provides mereo-
logical data pertaining only to geopolitical entities. Finally,
WordNet covers entities from diverse domains, in cate-
gories that include physical entities (e.g., animal, plant,
substance, physical process) and abstract entities (e.g.,
quantity, attribute, psychological feature). The WordNet
Tensor Data [2] uses a single label part of across these
different sorts of entities.

The relation definition for the part-of relationships
across PWKB, VisualGenome, and GeoNames is inconsis-
tent. To demonstrate the merits of our method, we sampled
objects to cover a wide spectrum of domains, including
animals, plants, artifacts, and locations from PWKB, Visu-
alGenome, and GeoNames. For convenience, in the follow-
ing, the four domains will be referred to as Animal part-of
(e.g., nose and dog), Plant part-of (e.g., leaf and tree), Arti-
fact part-of (e.g., leg and chair), and Located-in part-of
(e.g., Beijing and China), respectively.

Goal

We consider these as separate knowledge fusion targets with
separate relation labels. The goal will be to take WordNet
data, which is not classified, and fuse it into four domain-
specific knowledge sources by predicting specific kinds of
part-of relationships, with respect to these four targets.

In our experiments, these four domains each will
have a training and test set. Data sampled from PWKB,
VisualGenome and GeoNames will be divided into two
parts: 75% as training set, and the remainder as the
validation set. Data sampled from WordNet will serve as
the respective test sets. These datasets have two important
characteristics: (1) Because the WordNet dataset is a fairly
large one in terms of the number of words (entities), entities
in the test set will be mostly non-overlapping with those in
the training set. (2) The amount of connected components
is very large in the graphs for the respective two datasets,
meaning that there are many isolated parts. Throughout this
paper, connected components refer to weakly connected
components in a directed graph.

Comparison with Knowledge Graph Completion

The task we consider in this paper bears a relationship to
the task of knowledge graph completion, which focuses
on predicting missing knowledge given input knowledge
as training data. Although there are numerous strong
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Fig. 1 Example of connectivity between triples

knowledge graph completion and link prediction methods,
including RESCAL- and TransE-style approaches, such
methods typically can only predict an unseen relation if
substantial correlations or links are present. When such
information is missing, the methods often fare very poorly.

We consider the widely usd FB15k and WN18 datasets
from the TransE paper [3] to shed further light on this.
Table 1 provides statistics of these datasets. First of all, we
find that both FB15k and WN18 have high proportions of
overlapping entities between the training and test sets, as
given in the Entity Overlap columns. In Table 1, the Entity
Overlap column for the training set provides the number of
entities in the training set that can also be found in the test
set. The Entity Overlap column for the test set provides the
number of entities in the test set that can also be found in
the training set.

A second observation is that both FB15k and WN18
have very few connected components. Since there must exist
a link from subject to object in each triple, the number
of connected components depends directly on the number
of entity links across different triples. Hence, a simple
means of assessing a dataset is to determine the number
of entities that exist in both subject and object positions
in that dataset. Figure 1 shows two triples (s1, r1, o1)

and (s2, r2, o2), where o1 = s2. Graph-theoretically, this
scenario corresponds to having additional links between
triples, which entails a reduction in the number of connected
components. Thus, the more we encounter this sort of triple
pattern, the lower the amount of connected components.
According to the two respective Fig. 1 Pattern columns in
Table 1, both FB15K and WN18 have high proportions of
links occurring in this sort of configuration. This means that
there are few connected components and the overall graph
is fairly well-connected.

While knowledge graph completion methods work well
on FB15k and WN18, they face significant difficulties when
applied to datasets that have non-overlapping entity sets and

large numbers of separate connected components. We study
this in Section “Experiments”.

To solve the above two issues, we propose a joint
decomposition technique based on a subject–predicate–
object tensor and a separate similarity matrix. Tensors are
selected as a structure of choice to capture the knowledge
graph, because they provide a more convenient and more
cognitively inspired way to describe multi-source data and
to suitably capture their multi-linear structure [32]. In the
proposed method, similarities may serve as bridges between
triples. In cognitive science, similarity-based associations
between concepts are widely viewed as essential ingredients
of human cognition. In particular, humans often rely on
notions of similarity to infer information when limited prior
knowledge is available.

ProposedMethod

In this paper, we propose to rely on a 3rd-order tensor
model to predict the relation and thereby select appropriate
relationships for data fusion, with said tensor denoted as
X ∈ R

I×J×K . As discussed, we additionally rely on entity
similarities as side information to assist in the process of
relation prediction. These similarities are assumed to be
given in the form of a similarity matrix P ∈ R

I×J .

Model

Figure 2 provides an illustration of our model, including
the Subject × Object × Relation tensor and the Subject ×
Object similarity matrix.

Subject×Object×Relation Tensor We establish a Subject ×
Object × Relation tensor, denoted as X ∈ R

I×J×K , where
I , J , and K represent the number of subjects, objects, and
relations, respectively. Any entry Xijk in X ∈ R

I×J×K

captures a score that characterizes the probability of a
relation k between subject i and object j . The higher this
score is, the more likely the relationship is taken to hold
by the model. In practice, the scores of training triples with
known true relationships are initialized to a common larger
constant such as 1, while other entries are initialized to

Table 1 Statistics for standard knowledge graph completion datasets

Datasets No. of entities in training set No. of entities in test set

Entity overlap Fig. 1 Pattern Total Entity overlap Fig. 1 Pattern Total

FB15k 481,316 483,129 483,142 59,071 58,589 59,071

WN18 58,302 141,440 141,442 4998 2128 5000
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Fig. 2 Tensor and similarity model. The triples are taken from multi-
ple databases, and serve as a source of subject words as well as object
words. We compute the semantic similarity between any two words as

side information. Finally, the joint decomposition model predicts the
scores of all relations for every pair of subject word and object word

global smaller constant such as 0. Due to the small size of
the training set, X is a sparse tensor.

Subject × Object Similarity Matrix As the graph consists
of a large amount of isolated connected components, it
is not sufficient to directly predict relations based on a
very sparse tensor of this sort. Thus, a Subject × Object
similarity matrix is constructed to serve as side information
to the model, in order to assist in better predicting the
relations. The similarity matrix is denoted as P ∈ R

I×J .
Due to the nature of similarity scores, this matrix is dense.
A careful analysis of the model shows that within the
side information, only similarities between any two subject
words or any two object words are effectively used to
determine the relationships. Similarities between subject
and object are not required. Hence, the similarities between
any two subjects and any two objects are computed by an
appropriate similarity metric. We will analyze similarity
computation methods in Section “Similarity”.

Given these two inputs, we rely on tensor decomposition
with side information to optimize for the objective function
in Section “Objective Function” and complete X via an
ADMM approach [4] in Section “Model Solution Based on
ADMM”. Finally, we select the relation with the highest
score as the relation of the corresponding pair of subject and
object.

Objective Function

The goal of the model is a joint analysis of the
information captured by the sparse tensor X and the side
information matrix P to predict the score of every candidate
relationship. Hence, we define an objective function in

which the main tensor and side information matrix are
decomposed simultaneously, and then seek to minimize this
objective. The joint objective simultaneously decomposes
the tensor X via the RESCAL [27] method, while for
the side information matrix, it relies on standard matrix
factorization. To achieve this, the objective function Z is
composed of a tensor function denoted by Z1 as well as a
side information matrix function Z2:

Z = Z1 + Z2, (1)

where Z1 denotes the least squares error with respect to the
RESCAL objective

Z1 = 1

2

K∑

k=1

‖Xk − A1RkBT
1‖2

F

+λ3

2

K∑

k=1

‖Rk‖2
F + λ1

2
(‖A1‖2

F + ‖B1‖2
F) (2)

In the above equation, Xk denotes the kth slice of the
X tensor. It is decomposed as a matrix multiplication of
three matrices. A1 ∈ R

I×R captures the latent component
representation of subjects, while R is the rank of the
tensor. B1 ∈ R

J×R will contain the latent component
representation of objects. Rk is an asymmetric R × R

matrix that models the interactions of A1 and B1 in
the kth predicate. The final two items in Eq. 2 are
the regularization terms, in which λ1 and λ3 serve as
regularization parameters.

Similarly, Z2 represents the least squares error with
regularization term for decomposing the similarity matrix
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P into A2 and B2 using standard matrix factorization. It is
defined as

Z2 = 1

2
‖P − A2B2

T‖2
F + λ2

2
(‖A2‖2

F + ‖B2‖2
F), (3)

where the definitions of A2, B2 are the same as for A1 and
B1. λ2 is a regularization parameter.

Considering that the side information matrix P is coupled
with the main tensor X , they share some common factors.
As a result, A1 and A2 should be equal to the extent
possible, and the same applies accordingly to B1 and B2.
To encourage this, we introduce global factor variables
denoted by A and B and corresponding constraints defined
as Eq. 4. Furthermore, to some extent, global factors help
to accelerate the convergence of the model, because A1 and
A2 possibly have a substantial difference given that they
represent different information.

Ai − A = 0 ∀i ∈ {1, 2}
Bi − B = 0 ∀i ∈ {1, 2} (4)

Model Solution Based on ADMM

As mentioned above, our overall optimization problem is
modified to minimize the objective function Z in Eq. 1 with
the constraints in Eq. 4. Hence, the resulting constrained
optimization problem is

min
F

Z

s.t . Ai − A = 0 ∀i ∈ {1, 2}
Bi − B = 0 ∀i ∈ {1, 2}

(5)

where F = {A1,A2,B1,B2,Rk}, and A, B denotes the
global factor matrices. To simplify the objective function
Z with the constraints, Eq. 5 can be transformed into
an unconstrained optimization objective via Lagrangian
augmentation. The transformed objective function Lρ(·) is

Lρ(·) = Z +
2∑

i=1

tr([�i
A]T(Ai − A)) + ρ

2

2∑

i=1

‖Ai − A‖2
F

+
2∑

i=1

tr([�i
B ]T(Bi − B)) + ρ

2

2∑

i=1

‖Bi − B‖2
F (6)

where ρ denotes the penalty parameter. Lρ(·) represents
Lρ(F, �1

A, �2
A, �1

B, �2
B,A,B). Finally, �1

A, �2
A, �1

B, �2
B

are Lagrange multiplier parameters.

We adopt the ADMM technique [4] to optimize for this
objective with Lagrangian augmentation. In particular, the
iterative solution of Eq. 6 is as follows.

Fk+1 ← arg min
F

Lρ(F, �1
A, �2

A, �1
B, �2

B,A,B)

A
k+1

,B
k+1 ← arg min

A,B

Lρ(F, �1
A, �2

A, �1
B, �2

B,A,B)

(�i
A)k+1 = (�i

A)k + ρ
(
Ak+1

i − A
k+1

)
∀i ∈{1, 2}

(�i
B)k+1 = (�i

B)k + ρ
(
Bk+1

i − B
k+1

)
∀i ∈{1, 2} (7)

Updating A1, A2, B1, B2 We obtain the update formulae by
taking the partial derivatives of Lρ in Eq. 7 with regard to
A1, A2, B1, B2, respectively, and set these derivatives to
zero. The results are as follows, where I denotes the identity
matrix.

A1 =
(

K∑

k=1

XkB1RT
k − �1

A + ρA

) (
K∑

k=1

RkBT
1B1RT

k +(ρ + λ1)I

)−1

(8)

B1 =
(

K∑

k=1

XT
kA1Rk − �1

B + ρB

)(
K∑

k=1

RT
kA

T
1A1Rk+(ρ + λ1)I

)−1

(9)

A2 =
(
PB2 − �2

A + ρA
) (

BT
2B2 + (λ2 + ρ)I

)−1
(10)

B2 =
(
PTA2 − �2

B + ρB
) (

AT
2A2 + (λ2 + ρ)I

)−1
(11)

Updating Rk Following previous work [27], by holding A1
as well as B1 constant, and vectorizing Xk together with Rk ,
the function for minimizing Rk can be transformed as

f (Rk) = 1

2
‖vec(Xk) − (B1 ⊗ A1) vec(Rk)‖2

2 + λ3

2
‖vec(Rk)‖2

2 (12)

where ⊗ denotes the Kronecker product. Minimizing Eq. 12
can be viewed as regularized linear regression. As a result,
the solution of Eq. 12 is

vec(Rk) = (
MTM + λ3I

)−1
MTvec(Xk) (13)

where M denotes B1 ⊗ A1. However, computing MTM
is very inefficient. This can be solved by singular value
decomposition (SVD) of A1 and B1, defined as A1 =
UASAVT

A and B1 = UBSBVT
B [27]. Then Eq. 12 can be cast

as

f (Rk) = 1

2
‖UT

AXkUB − SA(VT
ARkVB)ST

B‖2
F + λ3

2
‖VT

ARkVB‖2
F (14)

According to Eq. 13, the solution of Eq. 14 is

vec(R̂k) = (NTN + λ3I )−1NTvec(X̂k)

Rk = VAR̂kVT
B (15)

where X̂k = UA
TXkUB , R̂k = VT

ARkVB , and N = SB⊗SA.
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Updating �1
A,�

2
A,�

1
B,�

2
B According to Eq. 7, the formu-

lae for updating �1
A, �2

A, �1
B, �2

B are easily computed.

Updating A, B As for A, according to Eq. 7, its partial
derivative is computed and set to zero. Then we obtain the
update formula for A.

A = 1

2ρ

(
�1

A + �2
A + ρA1 + ρA2

)
(16)

For computational convenience, the initial iterative value
of �i

A, denoted as (�i
A)0, is set to zero. We can prove∑2

i=1(�
i
A)k = 0 by mathematical induction. Updating B is

similar to updating A. Therefore, the final update formulae
are

A = A1 + A2

2

B = B1 + B2

2
(17)

Algorithm Algorithm 1 shows the complete algorithmic
procedure for our model. We take X , P, I , Imax, R,
λ1, λ2, λ3, and ρ as input. Before invoking the main
algorithmic loop, we initialize relevant matrix variables and
set the convergence or stop criterion for the loop. Then the
algorithm starts updating these matrix variables recurrently
until the convergence or stop criterion is met. Finally, the
completed tensor X is generated by a multiplication of A1,
Rk , and B1.

Time Complexity Table 2 lists the time complexity of each
operation in the update steps of A1, A2, B1, B2, Rk ,
A,B, �1

A, �2
A, �1

B, �2
B. Xk has few non-zeros due to

sparse tensor X . Therefore, Xk can be treated as a sparse
matrix. In time complexity analysis, we use O(pIJ ) as the
time complexity for the matrix multiplication of a sparse
matrix U with a dense I × J matrix N , where p is
the number of non-zeros in M [28]. In addition, R is a
hyper-parameter and is always assigned a very small value,

because we adopt low-rank decomposition in tensor/matrix.
As a result, updating A1 and B1 needs O(IJKR)/O(pKR ·
max{I, J }) time, while updating A2 and B2 costs O(IJR)

time. O(·)/O(·) respectively represents time complexity
when Xk is treated as a dense matrix and a sparse matrix.
Fortunately, in Eq. 15, SA and SB are both diagonal
matrices. We could transform these matrices into vectors
to compute (NTN + λ3I )−1NT. Consequently, updating
Rk costs O(IJR)/O(pJR) time. The time complexity
of updating �1

A, �2
A, A is O(IR), and updating �1

B,
�2

B, B is O(JR). In summary, updating all variables
requires O(IJRK)/O(pKR · max{I, J }) time. Due to
max{K, R} � min{I, J }, the time complexity is actually
much closer to O(IJ )/O(p · max{I, J }). Moreover, when
Xk is treated as a sparse matrix, the time complexity is
linear in max{I, J }. Our implementation relies on NumPy
package2 for the matrix operations.

Experiments

Data

For our experiments, following our previous discussion
in Section “Problem Definition”, we obtained data from
PWKB, VisualGenome, GeoNames, and WordNet. The
part-of relation data is divided into four classes. Specifi-
cally, triples with a located-in part-of relation in the training
set and validation set are obtained from the GeoNames
dataset, while triples with the other three forms of part-
of relation are extracted from PWKB and VisualGenome
as the rest of the training set and validation set. In PWKB
and VisualGenome, the method of obtaining triples with the
other three different part-of relations is to extract the hyper-
nyms of their subjects and objects in WordNet, based on
Table 3. Subsequently, the test set is sampled in the same
way from the hypernym relation tree in WordNet.

In our datasets, each relation has 5096 triples in the
training set and 1699 triples in the test set (based on a
ratio of 3:1). In total, the training and test sets consist of
20,384 and 6796 triples, respectively. The amount of entities
is 16,677, which means that the tensor is extremely sparse.
There are also a few negative (incorrect) instances in the
training set due to noisy triples stemming from PWKB
and VisualGenome. Triples in the test set are all positive
examples, since they come from WordNet.

The training and test data have special characteristics
that distinguish them from the knowledge graph completion
datasets studied in Section “Problem Definition”: (1) The

2https://www.numpy.org/

https://www.numpy.org/
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Table 2 Time complexity in
the update step of variables Variables Computation Time complexity

A1 XkB1RT
k O(IJR) + O(IR2) if Xk is dense.

O(pJR) + O(IR2) if Xk is sparse.

RkBT
1B1RT

k O(JR2)

B1 XT
kA1Rk O(IJR) + O(JR2) if Xk is dense.

O(pIR) + O(JR2) if Xk is sparse.

RT
kA

T
1A1Rk O(IR2)

A2, B2
PB2, PTA2 O(IJR)

BT
2B2 and AT

2A2 O(JR2) and O(IR2)

A1, B1, A2, B2 Matrix inversion O(R3)

Rk SVD of A1 and B1 O(IR2) and O(JR2)

UA
TXkUB O(IJR) + O(IR2) if Xk is dense.

O(pJR) + O(IR2) if Xk is sparse.

(NTN + λ3I )−1NT O(R2)

VAR̂kVT
B O(R3)

�1
A, �2

A, A Matrix addition O(IR)

�1
B, �2

B, B Matrix addition O(JR)

subjects and objects between the training set and test set are
strictly non-overlapping. (2) The training set has 14.23% of
triples matching the pattern in Fig. 1, while the test set has
3.72% of such triples.

Evaluation Procedure

We use the training set for training and parameter tuning.
The test set is used to evaluate the model by predicting the
relations for test set triples. After running Algorithm 1, the
model picks the relation with the maximum value among
the corresponding four relations as the output relation. As
a metric, the standard accuracy measure is used to evaluate
the results on each relation of the test set.

Parameter Tuning Our model has 6 parameters: λ1, λ2,
λ3, ρ, R, and Imax. We need to select the rank R to
represent the number of factors and λ1, λ2, λ3 to control
the regularization. Furthermore, Imax is selected to control
the maximal number of iterations and is set to 100. The
model is constructed based on the training set with different
choices for model parameters. We compute the prediction

accuracy on the held-out set and pick the parameters that
maximize the accuracy. In addition, the minimum accuracy
value across the four relations is selected as the basis for
parameter tuning. The ranges of λ1, λ2, λ3 are all 0–5. The
range of ρ is 0–1 and the range of R is 5–15. We set the
remaining parameters to fixed values to reduce their impact
on the model performance while tuning each parameter.
After that, we select the best overall result of our model,
in which the values of parameters are λ1 = 1.5001, λ2 =
0.0001, λ3 = 5.5001, ρ = 2.5001, and R = 10.

Similarity

There are numerous kinds of similarity computation
methods for words. Generally, these methods can be divided
into two categories, graph-based similarity measures and
word embedding–based similarity computation. Table 4 lists
some example words with different similarity scores. Words
here are identified as “word.POS.sense”, where POS is the
part-of-speech of the word and its sense in the WordNet
lexical resource is represented by an integer number. For
instance, dog.n.01 refers to the first sense among all noun
senses of the word dog listed in WordNet.

Table 3 The hypernyms of
subjects and objects Relations Hypernyms

Subject Object

Animal part-of Body part/body substance Animal

Plant part-of Plant part/plant structure Plant

Artifact part-of Artifact/artefact Artifact/artefact
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Table 4 Example word similarities

Word1 Word2 WUP LCH ADW JCN LIN GloVe Remarks

dog.n.01 cat.n.01 0.8667 2.0794 0.3815 0.5374 0.8863 0.8017 Animal

dog.n.01 apple.n.01 0.4545 1.1239 0.2346 0.0596 0.1404 0.2634 Animal and plant

dog.n.01 giraffe.n.01 0.7742 1.6094 0.3810 0.0000 0.0000 0.3556 IC (giraffe)=0

leg.n.01 foot.n.01 0.7000 1.7430 0.5716 0.1839 0.6308 0.6396

leg.n.03 table.n.02 0.7000 1.7430 0.6163 0.0863 0.3728 0.3244

Graph-Based Similarity Measures

Graph-based similarity measures rely on the graph structure
in a lexical knowledge graph such as WordNet. Three
different kinds of methods can be distinguished.

Path-Based Similarity Lexical knowledge bases are often
based on relational hierarchies, such that there must exist
a path between any two words of the same part-of-speech.
Typically, these hierarchies are based on semantic attributes
and ontological considerations, and hence these paths can
directly be exploited by similarity methods. Two methods
that achieve this are the Wu & Palmer (WUP) [40] method
and the LCH [19] method. As shown in the first and second
rows of Table 4, both Wu & Palmer (WUP) metric and
the LCH [19] metric succeed at distinguishing similar word
sense pairs from less similar ones.

Semantic Random Walks Instead of directly using the
paths between two nodes, one can also consider random
walks to capture the overlap between their respective
neighborhoods. A representative semantics-based method
is Align, Disambiguate, and Walk (ADW) [30]. However,
we observe that ADW does not succeed at discriminating
between positive and negative pairs in Table 4.

IC-Based Similarity Resnik [33] used information content
(IC) for computing similarity (RES). We also consider
two other representative IC-based methods denoted as
JCN [15] and LIN [20]. According to Table 4, these two
methods perform as well as path-based similarity measures.
However, one drawback is that IC scores are computed from
a corpus, in which some rare words may be missing, and
obtain IC scores of 0. As shown in the third row of Table 4,
the IC for giraffe.n.01 is zero.

Word Embedding-Based Similarity

Word embeddings allow us to map words to vectors of
a fixed length by drawing on distributional co-occurrence
patterns on large corpora. Subsequently, we can compute
the cosine or Euclidean distance between two word vectors
to obtain similarity scores. The two most well-known

embedding methods are word2vec [25] and GloVe [29].
However, these methods cannot deal with the problem of
polysemy, and sense induction variants also tend to be noisy
due to the difficulty of word sense disambiguation. As
considered in the 4th and 5th row, one may distinguish two
senses of the word leg, referring to a human limb (leg.n.01)
or to one of the supports of a piece of furniture (leg.n.03).
The word vector for leg, however, is unique, leading to a low
similarity score between leg and table.

For the sake of fairness, we only experiment with
WordNet-based similarity approaches rather than word
embedding–based similarity approaches due to the inability
of word sense disambiguation and the lack of some low-
frequency words.

Baselines

To assess the effectiveness of the proposed method,
we compare the results of our approach against three
competitive baselines.

Joint Analysis Based on CP Decomposition CP decompo-
sition [16] is a common factorization method, seeking to
factorize a tensor into a sum of component rank-one tensors.
To evaluate CP decomposition on our task, in our objective
function, Z1 is changed to

Z1 = 1

2
‖X(1) −A(C�B)T‖2

F + λ1

2
(‖A‖2

F +‖B‖2
F +‖C‖2

F),

(18)

where X(1) denotes mode-1 matricization of the X tensor,
C ∈ R

K×R denotes the latent component representation
of relations, and � denotes the Khatri–Rao product. The
subsequent derivation process and algorithm are similar to
our model.

Standard RESCAL Method For comparison, we also consid-
ered the standard RESCAL decomposition model, in which
we disregard the side information matrix.

TransE-Style Models As introduced in the “Related Work”
section, models of this sort are well-known approaches
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Table 5 Experimental results of our model and baselines. The values in italics represent the maximum accuracy of each category of all models

Models Part-of relation accuracy

Animal Plant Artifact Located-in Average

Our model (WUP similarity) 97.17% 94.52% 92.23% 100.00% 95.98%

Our model (LCH similarity) 98.23% 95.94% 96.65% 99.71% 97.63%

Our model (ADW similarity) 89.23% 55.80% 78.10% 98.82% 80.49%

Our model (LIN similarity) 72.75% 32.31% 34.37% 100.00% 80.48%

Our model (JCN similarity) 51.50% 26.60% 16.30% 38.14% 33.14%

Joint analysis based on CP decomposition 63.86% 68.04% 68.92% 100.00% 63.86%

Standard RESCAL decomposition 100.00% 0.00% 0.00% 0.00% 25.00%

TransE 0.00% 100.00% 0.24% 0.00% 25.06%

TransH 0.00% 0.00% 5.89% 97.35% 25.81%

TransR 0.00% 100.00% 0.06% 0.00% 25.01%

CTransR 0.00% 0.00% 100.00% 0.00% 25.00%

PTransE ADD 61.33% 32.25% 0.05% 0.00% 23.41%

PTransE MUL 24.43% 74.40% 0.06% 0.00% 24.72%

PTransE RNN 61.09% 46.09% 0.12% 0.00% 26.83%

for knowledge graph completion. We rely on the THU
implementation.3

Results

In our experiments, we constructed the model and
completed the tensor using the parameters tuned via the
training set, and then predicted the part-of relationships
for test set triples. We then use the test set to compute the
prediction accuracy comparing the predicted results and the
true test set results. Table 5 provides the results achieved
by our model and by the baselines in terms of the accuracy
on the test set. We observe that our model has a substantial
advantage over the baselines.

As evinced by the experimental results in Table 5, our
model greatly outperforms the baselines across different
kinds of part-of relations in terms of the average accuracy.
CP factorization can be viewed as factorizing a 3-
dimensional tensor into a mathematical operation over three
factor matrices, for subject, object, and predicate factors,
respectively. Because of the non-overlap of training and test
entities and the many separate connected components, the
side information provided by the similarity matrix is crucial
in providing links between subject words and object words,
and plays an important role for relation prediction. However,
for CP decomposition, the independent aspects of each
different part-of relation are not taken into consideration
sufficiently well and reflected in the predicate factor matrix,
which leads to substandard results in our experiments.
Instead, the RESCAL component of our approach deals

3https://github.com/thunlp/KB2E

with the relations by factorizing each slice of the 3-order
tensor independently, in a way that can account for the
particular differences between relations.

In addition, comparing our model results with relation
prediction approaches, we see that the results for the
standard RESCAL and TransE-family approaches are
particularly unsatisfactory, with many cases of 0% accuracy.
It turns out that, without side information, the predicted
relation for almost all of the triples in the test set is
often the same. It appears that the model selects one or
two relations seemingly haphazardly, which is determined
by the parameter selection. Due to our graph having (1)
numerous isolated connected components, (2) a lack of
overlap between the training and test set entities, the
model fails to predict the correct relations. Thus, the joint
similarity matrix factorization proves crucial in providing
the missing connections between entities. Given that (2)
means that links exist between the training and test set,
one can consider (2) a special case of (1). Hence, overall,
what causes bad results for the standard RESCAL and
TransE-family approaches is an extreme lack of connections
between the entities. For instance, as shown in Fig. 3a,
without the link between dog and canine, a model based on
link prediction cannot predict that nose is a part of canine,
because the two entities are disconnected. In the process of
training the model, links in the graph serve as constraints.
Hence, the trained model fares poorly when there are only
few constraints. In our model, as can be seen from Fig. 3b,
the similarity matrix serves as a sort of link that bridges the
gap between entities. Due to our method’s ability to jointly
consider the tensor and this similarity matrix, it obtains
substantially stronger results than the baselines.

https://github.com/thunlp/KB2E
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(a) (b)

Fig. 3 a Knowledge graph completion. The left figure shows an example of the input, while the right side shows the lack of successful link
prediction. b An example as predicted by our model

Results of Experiments with Other Similarities As shown
in Table 5, models with path-based similarity approaches
(WUP and LCH) provide the highest levels of accuracy.
The accuracy of our model with LCH similarity is higher
than when relying on WUP similarity. The main reason is
that WUP similarity scores are normalized values ranging
from 0 to 1, while LCH similarity ranges from 0 to infinity,
which can enlarge the gap between similar word sense pairs
and less similar ones. In contrast, ADW similarity obtains
inferior results, owing to scores such as for the examples
given in Table 4. Finally, due to the lack of IC scores for
rare words mentioned in Section “Similarity”, models with
IC-based similarity (LIN and JCN) obtain very low levels of
accuracy.

Error Analysis Some cases of errors of our model results
from incorrect generalizations. Given the similarity matrix,
the subject “tail.n.01” and object “ant.n.01” are predicted
to stand in a part-of relationship for the animal dataset.
However, it is common sense that ants do not possess tails.
We believe that these sorts of errors occur due to incorrect
generalizations, possibly because the similarity links are
undirected. In future work, one could consider adapting the
matrix or incorporating additional constraints to avoid such
errors.

Conclusion

This paper presents a cognitively inspired approach for
the fusion of knowledge pertaining to the part-of relation
from heterogeneous sources. Our approach addresses the
challenging setting of operating on graphs with large
numbers of isolated connected components, and non-
overlapping entity sets between the training and test sets,
which are not well-supported by existing knowledge graph

completion methods such as RESCAL and the TransE
family of neural approaches.

Instead, we propose jointly optimizing for tensor
factorization along with matrix factorization of a similarity
matrix, via an instantiation of the ADMM technique. In
our experiments, we find that our method outperforms all
baselines with a substantially higher average accuracy.
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