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Abstract
In recent years, we have seen an increasing amount of interest in low-dimensional vector representations of words. Among other things,
these facilitate computing word similarity and relatedness scores. The most well-known example of algorithms to produce representations
of this sort are the word2vec approaches. In this paper, we investigate a new model to induce such vector spaces for medical concepts,
based on a joint objective that exploits not only word co-occurrences but also manually labeled documents, as available from sources such
as PubMed. Our extensive experimental analysis shows that our embeddings lead to significantly higher correlations with human similarity
and relatedness assessments than previous work. Due to the simplicity and versatility of vector representations, these findings suggest that
our resource can easily be used as a drop-in replacement to improve any systems relying on medical concept similarity measures.
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1 Introduction

For many decades, researchers have debated the curious
nature of human language. On the one hand, language ap-
pears to naturally involve discrete symbolic units. On the
other hand, these symbolic units are clearly not indepen-
dent. There is a clear relationship, for instance, between the
two words neuron and neural. The same applies to multi-
word expressions, as are common in the medical domain,
for instance, between the central nervous system and the
peripheral nervous system.
In the past, many models ignored such semantic relation-
ships, or invoked custom techniques such as query expan-
sion, to cope with them. Recently, another alternative has
proven useful and acquired significant popularity: Discrete
symbols can be mapped to a low-dimensional vector space,
in which distances or angles between vectors reflect simi-
larities between the symbols. Many of the approaches for
this rely on neural network techniques. However, existing
approaches such as the word2vec Skip-Gram with Negative
Sampling model (Mikolov et al., 2013) neglect valuable
additional information that may be available in the used doc-
ument collections, e.g. human annotations or hierarchical
information.
In this paper, we investigate a new approach called All-in-
text for producing embeddings for medical concepts (Nam
et al., 2016). All-in-text was originally proposed for key-
word indexing and multi-label classification. In this paper,
we adapt it to the task of producing embeddings for medical
concepts. The learning method is inspired by the Paragraph
Vector technique (Le and Mikolov, 2014) of learning repre-
sentations of words and word sequences (documents), which
was originally used for text classification and sentiment anal-
ysis. However, All-in-text is a versatile framework that can
incorporate more complex connectivity information origi-
nating from the associations between documents and target
concepts in a background corpus. Fig. 1 shows some ex-
ample documents from the used corpus, associated with the
concepts Malnutrition and Overnutrition.

Our experimental evaluation show that this approach yields
state-of-the-art results on two medical semantic similarity
and relatedness datasets. Moreover, our vector representa-
tions can also be used in more flexible ways than standard
measures, as these representations encode additional kinds
of semantic information that can directly be exploited as
features by neural networks.

2 Related Work
In the past, coping with the semantic similarity of words
often meant relying on custom lexical resources. In the
simplest case, this could be a simple list of synonyms or
aliases. Lexical networks such as WordNet (Fellbaum, 1998)
led to extensive research on more sophisticated methods that
exploited graph connectivity and gloss comparisons.
In the medical domain, similar lexical resources and on-
tologies have been created. Major examples are the Med-
ical Subject Headings (MeSH)1, the Unified Medical Lan-
guage System (UMLS), and the SNOMED clinical terms
(SNOMED CT). Similarity measures such as the one pro-
posed by Wu and Palmer (1994) or Nguyen and Al-Mubaid2

consider the depth in the hierarchical structures of the used
ontologies or path lengths between two concepts in order
to compute a similarity metric. Resnik (1995) as well as
Jiang and Conrath (1997) propose to additionally exploit the
occurrence probabilities of the concepts, as computed on
large corpora.
Less ontology-dependent measures such as the Lesk mea-
sure and the Vector approach from Liu et al. (2012) rely on
textual descriptions of the concepts and context expansions
to compute the relatedness between terms. More details on
such measures, especially on the relatedness measures, are
given by Liu et al. (2012).
Another line of work proposed more data-driven methods
without the need for a knowledge base. The most well-

1https://www.nlm.nih.gov/mesh/
2http://atlas.ahc.umn.edu/umls_

similarity/similarity_measures.html
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Title: Spotlight on Global Malnutrition: A Continuing Challenge in the 21st Century.
Abstract: Malnutrition as undernutrition, overnutrition, or an imbalance of specific nutrients, can be found in all countries
and in both community and hospital settings around the world. The prevalence of malnutrition is unacceptably high . . .
MeSH terms: Acute Disease, Chronic Disease, Food Habits, Global Health, Humans, Malnutrition, Nutritional, Support,
Overnutrition, Risk Factors, Socioeconomic Factors

Title: Fetal and early-postnatal developmental patterns of obese-genotype piglets exposed to prenatal programming by
maternal over- and undernutrition.
Abstract: The present study evaluated the effect of nutritional imbalances during pregnancy, either by excess or deficiency,
on fertility and conceptus development in obese-genotype swine (Iberian pig). Twenty-five multiparous sows were . . .
MeSH terms: Animals, Newborn Animals, Body Weight, Fetal Development, Genotype, Malnutrition, Obesity, Overnutrition,
Pregnancy, Prenatal Exposure Delayed Effects, Swine

Title: Predictors of maternal and child double burden of malnutrition in rural Indonesia and Bangladesh
Abstract: BACKGROUND: Many developing countries now face the double burden of malnutrition, defined as the
coexistence of a stunted child and overweight mother within the same household. OBJECTIVE: This study sought to . . .
MeSH terms: Adult, Body Mass Index, Preschool Child, Cost of Illness, Cross-Sectional Studies, Developing Countries,
Family Characteristics, Humans, Indonesia, Infant, Logistic Models, Malnutrition, Mothers, Overnutrition, Population
Surveillance, Prevalence Risk Factors, Rural Health, Urban Health

Figure 1: Example entries from the BioASQ dataset of PubMed abstracts and associated MeSH terms. The combination
Malnutrition – Overnutrition appears 43 times in the dataset.

known family of such methods, aiming at overcoming the
discreteness of symbols, are Latent Semantic Analysis or
LSA (Deerwester et al., 1990), which applies singular value
decomposition for dimensionality reduction of the term-
document matrix, and its Bayesian probabilistic descen-
dant Latent Dirichlet Allocation or LDA (Blei et al., 2003).
These methods have been very influential in natural lan-
guage processing and information retrieval. Still, many of
them suffer from limited scalability and normally need to be
re-applied to new document collections. Distributional se-
mantic methods rely on term co-occurrence matrices rather
than term-document matrices (Schütze, 1993), delivering
quite meaningful results. However, experimental results
suggest that newer neural network-based models produce
better word representations than both LSA and traditional
distributional semantic methods (Pennington et al., 2014).
In recent years, low-dimensional embeddings have been pro-
posed as a particularly simple way to feed such knowledge
of similarities into machine learning algorithms (Collobert
et al., 2011; Turian et al., 2010). The fast algorithms by
Mikolov et al. (2013) and their freely available word2vec
implementation3 as well as the publicly available pretrained
data has made such word embeddings very convenient to use.
In recent years, numerous extensions have been proposed,
e.g. better exploiting information extraction pattern occur-
rences (Chen and de Melo, 2015) or multilingual structured
data (de Melo, 2015). All-in-text is based on the scalable
Paragraph Vector algorithm (Le and Mikolov, 2014), which
extends the word2vec ideas to jointly create representations
of words and word sequences such as sentences, paragraphs,
or entire documents.

3 All-in-text for Medical Concepts
Our goal is to learn representations for medical concepts. In
particular, we would like to project a given concept y to a k-
dimensional vector vy ∈ Rk. The size of our representation

3https://code.google.com/p/word2vec/

space Rk will typically be in the order of hundreds, and thus
much lower than in traditional term-vector spaces, where
the dimensionality corresponds to the size of the vocabulary.
Many neural approaches to learning such vector represen-
tations are based on the idea that the vectors for a series of
words, taken as input, should enable the prediction of related
words such as those co-occurring in some context window.
Using gradient-based optimization, one can keep altering the
vectors so as to facilitate such predictions. The Paragraph
Vector algorithm by Le and Mikolov (2014) extended this
idea to create vector representations of entire documents (or
paragraphs). The vector representation for a given document
is included as part of the input that is used to predict words.
The All-in-text approach draws on this framework to jointly
derive vector representations of documents as well as vector
representations of class labels associated with such docu-
ments (Nam et al., 2016). The approach relies on a corpus of
texts, in which each document has a (manually created) set
of labels, in our case with medical concepts. The objective
of the learning algorithm is to jointly learn vector repre-
sentations for documents and labels, exploiting the label
assignments for a given document.
The original purpose of the approach was automatic keyword
indexing or multi-label classification, i.e., the model can be
used to infer a list of relevant class labels for an unseen test
document by computing a distance score between the docu-
ment representation and all its label representations. A good
model will ensure a high compatibility between documents
and their associated labels. Based on the assumption that
related or similar class labels tend to co-occur in documents
more often than unrelated labels , we expect that vector
representations for similar labels will tend to be closer to
each other due to the associations via documents for which
such labels co-occur. However, relationships of this sort
could conceivably also be discoverable simply by counting
co-occurrences of class labels. Indeed, our experimental
results in Section 5 show that this turns out to already be a
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strong baseline. However, this idea only works for labels
that have been observed together. By jointly embedding
documents and labels, we are able to discern associations
between labels that are not directly observed together, but
can be detected indirectly via associated documents, for
example due to similar labels or similar content.
In our case, we consider documents labeled with medical
concepts and hence both medical documents and medical
concept labels are jointly embedded. We capture similarities
between concepts via document representations, exploiting
both documents showing direct co-occurrences of concept
labels as well as indirect connections, e.g. via documents
with similar terms within them. In the following, we de-
scribe the All-in-text algorithm (also called AiTextML, or
All-in-text joint embeddings for multi-label classification),
focusing on the parts that were used in our case. We refer
the reader to Nam et al. (2016) for more details, e.g. on the
additional ability of the approach to learn from textual class
descriptions.

3.1 Word and Document Embeddings
Assume that we are given a vocabulary of V wordsW =
{1, 2, . . . , V }, a set of concepts C = {1, 2, . . . , L}, and a
set of N training examples D = {(T (i),Y(i))Ni=1} where
T (i) = {w(i)

1 , w
(i)
2 , · · · , w(i)

|T (i)|} denotes a sequence of

|T (i)| words w(i)
j ∈ W , and Y(i) = {y(i)

1 , y
(i)
2 , · · · , y(i)

|Y(i)|}

is the set of relevant labels y(i)
j ∈ C for the i-th train-

ing example. AiTextML learns vector representations
U = {u1,u2, · · · ,uV } ∈ Rk×V for the words in W ,
X = {x1,x2, · · · ,xN} ∈ Rk×N for training documents
T (i), Y = {y1,y2, · · · ,yL} ∈ Rk×L for labels yi, and
U′ = {u′1,u′2, · · · ,u′V } ∈ Rc·k×V for word contexts,
where d is the desired embedding dimensionality and c is
the size of the context window.
We use the objective function of the Paragraph Vector algo-
rithm in order to learn the connection between document and
word representations, namely to maximize the probability
p(wt | w−t,x) of predicting a word wt at a certain position
t in a document T , given its surrounding words w−t and
the representation of the document (Le and Mikolov, 2014).
More specifically, this probability is given by

p(wt | w−t,x) =
exp(u′

T
wt
ûwt

)∑V
v=1 exp(u′Tv ûwt

)
(1)

where u′wt
is the c · k-dimensional vector for a central

(output) word wt, and the context ûwt
of wt is given by

the concatenation of context word embeddings w−t =
{wt−(c−1)/2, . . . , wt−1, wt+1, · · · , wt+(c−1)/2} as well as
of the document embedding x, as defined by

ûwt =
[
x,uwt−(c−1)/2

, · · · ,uwt+(c−1)/2

]
∈ Rc·k. (2)

As computing the denominator becomes intractable for large
vocabularies, we use negative sampling for efficiently ap-
proximating the softmax formulation (Mikolov et al., 2013).
Hence, we approximate the logarithm log p (wt | w−t,x) of
the probability by sampling only κwords out ofW , resulting

in

log σ(u′
T
wt
ûwt) +

κ∑
j=1

EPn(w)

[
log σ(u′

T
wj

ûwt)
]

(3)

where σ(x) is the sigmoid function, and Pn(w) is the fre-
quency distribution of the words in the corpus raised to the
power of 3/4.

3.2 Label Embeddings
Until now, modeling the relationship between documents
and their concept labels is disregarded. However, since
our goal is to maintain the relationship structure between
documents and their labels in the background corpus, for a
given document T (i) and its associated representation xi, we
learn to place the embeddings of associated concept labels
Y(i) closer to x than for the negative labels Ȳ(i) = C\Y(i).
More formally, our new objective is to minimize the ranking
loss ∑

y+∈Y(i)

∑
y−∈Ȳ(i)

I
[
f
(
xi,yy+

)
≤ f

(
xi,yy−

)]
(4)

where I [·] takes 1 if its argument is true otherwise 0, and
f(x,y) denotes the similarity between the respective rep-
resentations of document T and label y. It is computed
by

f(x,y) = xTWy. (5)

where W denotes a bilinear mapping between the label and
the document space, which is also learned by the algorithm.
For efficiency reasons, we use the weighted approximate
rank pairwise (WARP) variant of Eq. 4 (Weston et al., 2011).
Roughly speaking, similarly to negative sampling, WARP
samples negatives labels y− ∈ Y(i) until it finds a neg-
ative label which was correctly ranked above the corre-
sponding positive label. Eq. 4 is then estimated by com-
puted a weighted sum over the differences in the distances
m − f(x,yy+) + f(x,yy−) (the extent of error of rank-
ing the negative label above the positive one) where m is a
user-defined margin (in our case m = 0.1).
Stochastic gradient descent with a fixed learning rate is used
to train the parameters. The overall objective function is
given by adding up the sum over the negative logs (Eq. 3) for
each word in the corpus and the approximation of the rank
loss (Eq. 4) for each positive label in each of the documents.
Both terms can be weighted by two parameters α and β,
respectively. Technically, in each epoch, AiTextML iterates
over all documents, where it first updates the representations
of the sampled positive and negative labels, and then updates
the word representations.

3.3 Distance Computation
The part of the formulation of the problem for finding word
embeddings is very similar to the continuous bag of words
model (Mikolov et al., 2013), with the main difference that
a context document is added. Therefore, the resulting word
vector representations u can naturally be used for distance
computations by computing the cosine similarity or Eu-
clidean distance between a pair of embeddings.
In the same manner, we can compute distances between the
vector representations of concept labels. Based on Eq. 5,
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we can also relate document representations to concept la-
bel embeddings. Eq. 4 ensures that document embeddings
are compatible with their corresponding label embeddings,
as well as the other way around, while Eq. 1 ensures that
documents with similar words and word sequences are close.

4 Experimental Setup

Table 1: Mismatches of the approaches on the respective
datasets: Number of pairs for which no similarity measure
could be computed.

Dataset / UMNSRS UMNSRS MayoSRS
Approaches -rel -sim

Number of pairs 587 566 101

Nguyen & Al-Mubaid 268 257 50
Path 267 256 50
Wu & Palmer 268 257 50
Lin 267 256 50
Jiang & Conrath 268 257 50
Resnik 267 256 50

Lesk 41 33 14
Vector 41 33 14

PubMed 58 49 65
PMC 96 83 65
Pubmed & PMC 52 43 65
Wkpd & PubMed & PMC 50 42 65

Number of co-occurrences 333 312 51
AiTextML (label) 207 194 38
AiTextML (both) 59 45 27
AiTextML (word) 122 102 68

4.1 Evaluation Datasets
For evaluation, we mainly relied on the Medical Residents
Similarity and Relatedness Set datasets (Pakhomov et al.,
2010). These two datasets (UMNSRS-sim and UMNSRS-
res) consist of concept name pairs and similarity or relat-
edness assessments, respectively, made by 8 medical resi-
dents. In addition, we evaluated our approach on the Medical
Coders Set (MayoSRS) of 101 medical concept pairs rated
for semantic relatedness by medical coders (Pedersen et al.,
2007).
As our evaluation measure, we use the Spearman rank cor-
relation between the human-provided scores and the scores
computed by the respective algorithms. This metric mea-
sures the non-parametric statistical dependence between two
ranked variables. It is independent of the actual absolute
similarity scores obtained and is hence commonly used to
compare different systems that may compute similarities
based on different principles. The correlation coefficient
between two rankings is given by

ρ = 1−
6
∑n
i=1 rA(i)− rB(i)

n(n2 − 1)
(6)

where rA(i) are the ranks of the scores sA(i) of a method A
for concept pairs i = 1 . . . n, and similarly for method B. ρ
lies between 1 and 1, where 1 would be a complete positive
correlation, 0 means there is no correlation, and 1 would be
a complete anti-correlation. We use the standard procedure
for handling ties correctly, i.e. tied values are assigned the

Table 2: Evaluation results in terms of Spearman rank cor-
relation on the UMNSRS relatedness dataset for the path,
context-expansion, continuous vector representations, and
labeled background corpora based approaches (first to fourth
blocks, respectively).

Dataset subset and size / Smallest Small Middle Largest

Approaches 171 241 309 440

Nguyen & Al-Mubaid .3076 .2797 – –
Path .3157 .2861 – –
Wu & Palmer .3109 .2793 – –
Lin .2867 .2868 – –
Jiang & Conrath .2989 .2772 – –
Resnik .2548 .2999 – –

Lesk .3557 .3654 .3023 .3135
Vector .3859 .4827 .4526 .4650

PubMed .3384 .3688 .3784 .3757
PMC .2039 .2288 – –
Pubmed & PMC .3289 .3482 .3629 .3563
Wkpd & PubMed & PMC .3227 .3523 .3496 .3635

Co-occurrences .5386 – – –
AiTextML (label) .4659 .5500 .5297 –
AiTextML (both) – – – .5397
AiTextML (word) .2875 .3194 .2998 .3798

Table 3: Evaluation results on the UMNSRS similarity
dataset.

Dataset subset and size / Smallest Small Middle Largest

Approaches 171 237 307 440

Nguyen & Al-Mubaid .3456 .2689 – –
Path .3459 .2685 – –
Wu & Palmer .3543 .2753 – –
Lin .3361 .2941 – –
Jiang & Conrath .3705 .2907 – –
Resnik .2845 .3018 – –

Lesk .4154 .4140 .3971 .4078
Vector .4976 .5165 .5008 .5113

PubMed .4483 .4298 .4426 .4660
PMC .3409 .3054 – –
Pubmed & PMC .4354 .4034 .3985 .4300
Wkpd & PubMed & PMC .4243 .3912 .3916 .4366

Co-occurrences .5210 – – –
AiTextML (label) .5910 .5960 .5626 –
AiTextML (both) – – – .5632
AiTextML (word) .3890 .3476 .3356 .4183

average of all ranks of items sharing the same value in the
ranked list, sorted in ascending order of the values.
The terms in the UMNSRS datasets were selected from
the UMLS ontology and do not necessarily appear in the
MeSH hierarchy used by our method and the baselines. In
addition, the corpus-based approaches only cover a part of
the concepts due to limitations on the frequency of concepts
appearing in the dataset. There are also a few isolated cases
of multi-word expressions not identified by the word2vec
phrase recognition implementation. Table 1 provides an
overview of the concept pairs that could not be processed by
the different approaches. For a fair comparison, we focused
on different intersections covered by subsets of the methods.
Hence, the scores are not directly comparable between the
different subsets of concept pairs.
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Table 4: Evaluation results on the MayoSRS dataset.

Dataset subset and size / Smallest Small Middle Largest

Approaches 17 19 21 28

Nguyen & Al-Mubaid .1395 .1677 – –
Path .1044 .1396 – –
Wu & Palmer .1830 .2262 – –
Lin .2042 .2690 – –
Jiang & Conrath .2765 .3411 – –
Resnik -.0209 .0432 – –

Lesk .6568 .7125 .5660 .4410
Vector .5092 .5785 .5086 .4948

PubMed .4846 .5370 .5295 .4827
PMC .3087 .4171 – –
Pubmed & PMC .4022 .4727 .4819 .4525
Wkpd & PubMed & PMC .3296 .4189 .4278 .4319

Co-occurrences .3430 – – –
AiTextML (label) .7737 .7910 .7147 –
AiTextML (both) – – – .6376
AiTextML (word) .3813 .3016 .3143 .3427

4.2 Training Corpora
We trained the embeddings on 11.6 million documents from
the BioASQ Task 3a dataset4, a large collection of scientific
publications on biomedical research extracted until the year
2015 from the PubMed platform.5 The documents were la-
beled by the PubMed curators with 26,103 medical concepts
from the MeSH ontology, on average 11.2 per document.
Only the title and abstracts of the publications were available
and were hence used.
For the remaining parameters, we used the default settings
of the freely available implementation of AiTextML6, i.e., a
vector size of 100, window size of 5, learning rate of 0.025,
5 negative samples, and 20 epochs. As outlined in Section 3,
in our experiments we did not consider learning from label
descriptions. Instead, we used only the label to document as-
sociations (with a weight of 1

3 ) and the interactions between
documents and words (with a weight of 2

3 ).
We obtained vector representations for 26,103 of the MeSH
terms7 appearing in the documents of the collection. The
approach also obtained 513,196 embeddings for the words
appearing at least 20 times in the corpus.
The version of the model which only uses label embeddings
is referred to as AiTextML (label), whereas AiTextML (word)
uses only word embeddings for scoring concept pairs. A
third variant called AiTextML (both) switches to word em-
beddings only if no corresponding label embedding could
be found for one of the concepts.

4.3 Baselines
We compared our results against several state-of-the-art mea-
sures as implemented in the well-known UMLS::Similarity
package (version 1.41) (McInnes et al., 2009). These mea-
sures were briefly introduced in Section 2. The UMLS graph
and the included concept descriptions were used for the path

4http://www.bioasq.org/participate/data
5http://www.ncbi.nlm.nih.gov/pubmed
6https://github.com/JinseokNam/AiTextML
7We used the 2015 version from http://www.nlm.nih.

gov/mesh/filelist.html

and context expansion based measures.
Recently, Pyysalo et al. (2013) computed word vector
representation based on the popular word2vec skip-gram
with negative sampling approach on large corpora from
the medical domain. One of the variants was trained sim-
ilarly to our approach on almost 23 million article titles
and abstracts (PubMed). A second variant was computed
on nearly 700,000 full article texts from PubMed Central
Open Access (PMC). Two additional variants aggregated
PubMed & PMC, on the one hand, and additionally the
English Wikipedia on the other hand (Wkpd & PubMed &
PMC). The authors created 200 dimensional embeddings
using the original word2vec implementation with a win-
dow size of 5, hierarchical softmax, and a frequent word
subsampling threshold of 10−3.8

Contrary to our proposed approach, these models make no
explicit usage of the label information included with the
PubMed data. In order to provide a baseline for using this
additional information, we report the results for ranking
concept pairs according to their number of co-occurrences
in the BioASQ corpus.

5 Experimental Results
We compared the methods on different subsets of the original
sets of pairs. The first subset (Smallest) was obtained by
using the concept pairs that were covered by all approaches.
The second one (Small) was obtained in the same way, but
omitting the approach that scores pairs based on the number
of co-occurrences found, as it had a very low coverage (cf.
Table 1). The Middle-sized subset skips the path-based
approaches as well as the PMC dataset, whereas the largest
subset (Largest) was obtained by using the combination of
AiTextML label and word embeddings instead of AiTextML
(label).
The results are given in Tables 2, 3 and 4 for the correspond-
ing concept pair datasets. Comparing the Spearman rank
correlation scores for different measures, the first observa-
tion is that graph-based methods (first block) are generally
dominated by all other methods (except PMC), regardless
of the specific task or dataset. Among the context word co-
occurrence approaches (skip-gram models in the third block
and also AiTextML (word)), we observe that the correlation
depends on the corpus size. PMC uses the smallest corpus,
followed by AiTextML (word) and the larger corpora includ-
ing all PubMed abstracts. However, adding Wikipedia in
addition to the corpora from the medical domain generally
lowers the quality of the produced scores, indicating that
out-of-domain data may not be useful.
Interestingly, the continuous word vector representation
models are outperformed by the Vector approach by Liu
et al. (2012), which relies on simple discrete vectors for
glosses. We conjecture that although such traditional dis-
crete vectors are known to be inferior, the gloss descriptions
they are computed from provide valuable explicit semantic
information. This indicates that AiTextML could presum-
ably yield even better results by additionally exploiting such
glosses, which we did not make use of here in order to keep
our method more general.

8Freely available at http://bio.nlplab.org/.

4633



400 600 800 1000 1200 1400

Human Score

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
iT

e
x
tM

L 
(l

a
b
e
l)

(a)

400 600 800 1000 1200 1400

Human Score

0.5

0.6

0.7

0.8

0.9

1.0

A
iT

e
x
tM

L 
(w

o
rd

)

(b)

400 600 800 1000 1200 1400

Human Score

0.5

0.6

0.7

0.8

0.9

1.0

P
u
b
M

e
d

(c)

400 600 800 1000 1200 1400

Human Score

0.2

0.4

0.6

0.8

1.0

V
e
ct

o
r

(d)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

AiTextML (label)

0.5

0.6

0.7

0.8

0.9

1.0

A
iT

e
x
tM

L 
(w

o
rd

)

(e)

0.5 0.6 0.7 0.8 0.9 1.0

AiTextML (word)

0.5

0.6

0.7

0.8

0.9

1.0

P
u
b
M

e
d

(f)

Figure 2: Correlations of scores for UMNSRS-rel. The respective scores are referred to on the axis. Axis are cropped by
minimum and maximum values.

Exploiting the additional relationships between concepts
and documents with our proposed method AiTextML (label)
provides a substantial additional improvement compared to
the embedding approaches relying only on word context
information. AiTextML (label) and (both) improve the cor-
relation with human annotators for all datasets, also with
respect to the strong gloss vector baseline.

Regarding the difference between the assessment of related-
ness and similarity, our approach seems to be better suited
for evaluating the similarity of concepts. Note that similar-

ity and relatedness are two different concepts, oftentimes
with conflicting ground truths, as can be seen in Table 5.
Hence, it is not always possible to optimize both simulta-
neously. In fact for UMNSRS-rel, just using the number of
co-occurrences as a metric seems to be the best option in
order to evaluate the relatedness. However, the coverage of
such a counting-based approach is very low. In contrast, by
not only considering co-occurrences, our proposed method
can capture relatedness even if two concepts were not ob-
served directly together.
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Table 5: Inspection of example medical concept pairs. Similarity and Relatedness show the respective ranks of the listed
concept pairs according to the human evaluation. Ranks start at 0 and there were 167 remaining elements.

Left term Right term Relatedness Similarity AiTextML (label) AiTextML (word) Co-Occurrences

Ethanol Alcohol 1 7 42 74 21
Medrol Prednisolone 75 1 22 31 11
Nausea Vomiting 6 32 1 5 2
Polydipsia Polyuria 17 22 2 1 102.5
Hypothyroidism Synthroid 4 39 4 142 1

Angina Dyspnea 27.5 110 88 36 36
Xanax Ativan 97 6 9 8 50
Hernias Earache 165 160 53 78 147
Ataxia Ethanol 21 78 163 113 41
Overnutrition Malnutrition 87 165 7 7 66
Cirrhosis Hematemesis 96 31 147 103 147
Anosmia Constipation 154 152 122 25 136.5
Pallor Iron 22 57 159 160 147
Starvation Anorexia 11 17 77 132 96

Syphilis Gonorrhea 9 24 16 40 18
Bronchitis Pneumonia 88 34.5 26 6 14
Carboplatin Cisplatin 46 5 18 10 4

Fig. 2 shows correlations between different scores on the
UMNSRS relatedness dataset. In the ideal case of a per-
fect correlation, we would observe strictly monotonically
increasing curves. Our analysis shows that AiTextML (la-
bel) shows significantly better correlation with human as-
sessments (less dispersion) than alternative methods. The
AiTextML (label) and (word) variants clearly do not learn
the same underlying concept of distances (cf. Fig. 2c). In
fact, the word variant is highly correlated with the regular
word2vec skip-gram approach on the PubMed dataset (cf.
Fig. 2f).
Exploiting the connections between documents and concept
labels seems to be less beneficial for the relatedness task,
but the increase compared to previous approaches is still
very pronounced. A line of future research could be to
additionally exploit textual concept descriptions, which are
often available in medical ontologies, in order to further
improve our results on the relatedness task. Our method can
naturally be extended for this purpose, since it provides the
means for embedding such descriptions into the same joint
vector space in our setting.

5.1 Detailed Analysis
Table 5 lists some examples of medical concept pairs from
the UMNSRS dataset that appear in both the relatedness and
similarity subsets. Each column shows the ranks obtained
when ordering all 167 pairs from the subset according to the
respective evaluation. The example pairs in the first block
are the highest-scoring example pairs for each of the respec-
tive measures.The second block provides cases for which
the human scores differ the most from each other as well
as from the computed metrics. For instance, overnutrition
and malnutrition are obviously related, but refer to different
diagnostic circumstances. Interestingly, both AiTextML (la-
bel) and (word) evaluate the pair as closely related although
the number of co-occurrences does also not indicate a strong

connection. We suspect that the two words appear quite fre-
quently in close vicinity, e.g. in enumerations. This imposes
a proximity in the word embeddings space, which can then
be transferred to the label space.
A similar case is Xanax vs. Ativan, two different drugs of
the same active agent class for treatment of panic disor-
ders, which AiTextML correctly assessed as highly similar
although the co-occurrence patterns do not indicate it.
In contrast, a high number of co-occurrences seems to entail
a high label embedding similarity. Hypothyroidism (a dis-
order in which the thyroid gland does not produce enough
thyroid hormone) vs. Synthroid (a brand name for a synthetic
thyroid hormone), for instance, is top-ranked according to
co-occurrence, but not very similar according to word con-
texts.
In some cases, e.g. for polydipsia vs. polyuria and the al-
ready mentioned nutrition disorder pair, label and word-
based similarities remain close. Yet, a rather high word
co-occurrence frequency does not always imply closeness
in the label embeddings space. For instance, constipation
frequently comes with a temporal anosmia, the inability to
perceive odor, which is hence ranked as 25th pair accord-
ing to our word embedding technique. Yet, this strong link
is apparently insufficient to convince humans or our label
embedding algorithm of a high similarity or relatedness.

6 Conclusion
Our experimental evaluation shows that the embeddings
produced in our study correspond significantly better with
human assessments of medical concept similarity and re-
latedness than previous semantic methods do. Moreover,
our method is simpler to deploy than many traditional ap-
proaches. Once embeddings have been created, simple vec-
tor operations suffice to compute similarity scores. The
original MeSH data no longer needs to be distributed with
the tool. This suggests that our results are a simple and ef-
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fective drop-in replacement to improve any systems relying
on medical concept similarity measures. While our method
depends on label annotations, these are often quite abundant,
e.g. manually entered keywords for scientific publications
or hashtags in social media. Our data can be freely ac-
cessed from http://www.ke.tu-darmstadt.de/
resources/medsim.
Finally, vector representations encode various forms of se-
mantic information that can be used for tasks beyond mere
relatedness computation. An initial embedding layer can
be used with neural network architectures or also to gen-
erate feature vectors for other machine learning methods.
These machine learning algorithms can then make better
predictions based on the semantics of the concepts rather
than merely memorizing token identities.
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