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Abstract

Recent breakthroughs in self-supervised train-
ing have led to a new class of pretrained vi-
sion–language models. While there have been
investigations of bias in multimodal models,
they have mostly focused on gender and racial
bias, giving much less attention to other rel-
evant groups, such as minorities with regard
to religion, nationality, sexual orientation, or
disabilities. This is mainly due to lack of suit-
able benchmarks for such groups. We seek
to address this gap by providing a visual and
textual bias benchmark called MMBias, con-
sisting of around 3,800 images and phrases cov-
ering 14 population subgroups. We utilize this
dataset to assess bias in several prominent self-
supervised multimodal models, including CLIP,
ALBEF, and ViLT. Our results show that these
models demonstrate meaningful bias favoring
certain groups. Finally, we introduce a debi-
asing method designed specifically for such
large pretrained models that can be applied as a
post-processing step to mitigate bias, while pre-
serving the remaining accuracy of the model.

1 Introduction

The recent emergence of large pretrained vision–
language models has revolutionized many multi-
modal tasks previously considered impractical to
solve. Although architectures capable of jointly
addressing computer vision and NLP tasks using a
single unified model have been around for a while
(Lu et al., 2019; Tan and Bansal, 2019; Li et al.,
2019), recent advances in self-supervised training
methods have amplified the significance and appli-
cability of such models. The sheer power of these
methods is highly dependent on the scale of the
model and the diversity and distributional proper-
ties of the dataset on which they are trained. Due
to their wide range of diverse applications (Eslami
et al., 2021), it is of utmost importance to be aware
of the shortcomings of vision–language pretrained
(VLP) models as well as their capabilities.

One such limitation is that, like any other ma-
chine learning system, multimodal models may
be prone to exhibiting human-like stereotypical
biases such as gender or race-related stereotypes
(Nadeem et al., 2020; Garrido-Muñoz et al., 2021).
For instance, pretrained language models have been
shown to associate male-gendered phrases and sen-
tences to a greater extent with certain high-paying
professions and even with individual traits such
as intelligence, in comparison to female-gendered
phrases (Wang et al., 2021a). Similarly, it has been
found that Hispanic and African American names
may be tied to words representing danger and crime
more often than Caucasian names (Manzini et al.,
2019). Certain biases have also been identified in
computer vision models as well (Wang et al., 2019).
Such biases are discriminatory towards affected
population groups and can be extremely harmful
to society the more these models are deployed in
real-world applications.

While there has been some research aimed
at identifying and addressing biases in vision–
language models, most such studies have focused
on gender and racial biases, while other notable
groups such as religious minorities, national mi-
norities, LGBTQ people, and people with disabili-
ties have received much less attention, despite their
legal status as protected groups in the US. This is
alarming considering the fact that the potentially
affected groups together constitute a considerable
part of the global population. For instance, the US
Census Bureau reported approximately 40 million
people identifying as immigrants in the US and 244
million world-wide as of 2015.1 Furthermore, ap-
proximately 40 million people in the US and about
1 billion people in the world suffer from some sort
of disability.2 One of the main obstacles for bias
analysis of these relevant population groups has
been the lack of standardized benchmark datasets

1www.un.org/en/development/desa/population/migration
2www.worldbank.org/en/topic/disability

1725



Figure 1: Experiment pipeline. We feed target and attribute data to the model. The embeddings obtained from
pretrained encoders are then used to measure bias metrics between visual and textual stimuli following Eq. 1.

that specifically enable an analysis of how they
may be affected. In this paper, we attempt to ad-
dress this problem by gathering and releasing a
visual and textual bias benchmark called MMBias,
consisting of approximately 3,500 images and 350
phrases covering over 14 minority subgroups. Fur-
thermore, we utilize the dataset to measure stereo-
typical bias in several prominent self-supervised
multimodal VLP models that have attracted sig-
nificant attention recently, namely OpenAI CLIP
(Radford et al., 2021), ALBEF (Li et al., 2021), and
ViLT (Kim et al., 2021). In our experiments, we
quantify the bias present in these models, including
both cross-modal and intra-modal bias. Our results
confirm that these models harbor meaningful bi-
ases favoring certain groups. Finally, we introduce
a novel debiasing method designed for such large
pretrained models that can be applied as a post-
processing step to mitigate bias, and we show that
this step does not adversely affect the performance
in a substantial way.

2 Related Work

The majority of work on language models only fo-
cuses on gender and racial bias assessment (Guo
and Caliskan, 2021; Bordia and Bowman, 2019).
However, there have been some studies that con-
sider bias with regard to other categories such as
profession, religion, and disability as well (Nadeem
et al., 2020; Hutchinson et al., 2020). However,
these forms of bias are not just exclusive to the lan-
guage domain, and image classifiers as well as mul-
timodal models have also been shown to demon-
strate such biases (Srinivasan and Bisk, 2021; Ross
et al., 2020).

Thus far, there has been rather limited work
on multimodal bias assessment of self-supervised

models such as CLIP, and prior work considers
only gender and racial biases. Wang et al. (2021b)
measures the gender and racial bias in CLIP’s im-
age classification module using the Fairface dataset,
while Wang et al. (2021a) further show that CLIP
associates male-gendered phrases to high-paying
professions more than female-gendered phrases.
Agarwal et al. (2021) provide insights towards po-
tential applications of the CLIP model and further
study and evaluate its gender/racial bias as well
as measuring the misclassification differences be-
tween different subgroups. Bhargava and Forsyth
(2019) measure and propose solutions to gender
bias in several image captioning systems.

The only work that addresses other relevant
groups such as religion, sexual orientation, and
disability in the image space is Steed and Caliskan
(2021). However, the data considered in the study
is limited, consisting of only around 600 images,
out of which around 500 again correspond to gen-
der and racial biases. This leaves only around 100
for other protected groups, i.e., fewer than 20 im-
ages for each protected group study. Sirotkin et al.
(2022) use this limited dataset to measure bias in
several self-supervised visual models but the au-
thors do not explore multimodal models such as
CLIP. An orthogonal line of research has been pur-
sued in Zhou et al. (2022), where several multi-
modal vision-language models are analyzed to mea-
sure these models’ tendency to pick stereotypical
statements as captions for anti-stereotypical images
in pre-trained vision-language models. With MM-
Bias, we thus hope to enable further research on
diverse forms of bias in vision–language models.
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Figure 2: Sample images from the MMBias dataset. Each row corresponds to one of the target classes: religion,
nationality, disability, and sexual orientation. Images are compiled from the image sharing service Flickr.

3 Methodology

Bias and Fairness. In conventional social stud-
ies, one of the most well-established and widely-
investigated forms of biases is what is known as
implicit bias, or as social stereotypes, defined and
investigated in Greenwald and Banaji (1995). This
type of bias is usually measured using Implicit
Associate Testing (IAT), introduced in the semi-
nal work of (Greenwald et al., 1998), and has so
far been widely used to describe and account for
a wide range of implicit prejudices (Kiefer and
Sekaquaptewa, 2007). IAT experiments quantify
human implicit bias by measuring response times
differences when human subjects are asked to pair
similar concepts and different concepts. In its orig-
inal form, IAT was used to to measure the degree
of pleasantness (a.k.a. valence in psychology), of
entities such as “flowers” and “insects” by pairing
them with abstract attributes such as pleasant and
unpleasant (Russell, 2003). Caliskan et al. (2017)
showed that a similar IAT testing paradigm can be
applied to bias measurement in deep embeddings.
In this approach, instead of subject reaction time,
the proximity of embeddings of a basket of words
that represent a concept is measured. Furthermore,
word sentiment is usually used to represent valence,
due to well-established studies linking word sen-
timent with the psychological concept of valence
(Mohammad, 2016). The experimental methodol-
ogy used in our study follows similar principles.

More generally, a machine learning system may
be deemed unbiased or fair when its predictions
do not favor members of any relevant population
group or discriminate against any other (Garrido-
Muñoz et al., 2021). For instance, suppose that
the class under consideration is religion and we are
evaluating pleasantness / unpleasantness scores a

system would assign to each considered religious
subgroup. A machine learning system is assessed
as fair if and only if the scores it assigns to different
religious subgroups do not differ substantially.

More formally, in a bias study, the two sub-
groups under study, also known as target entities,
may be represented as sets of instances X =
{x1, x2, ..., xN} and Y = {y1, y2, ..., yN}. For
example, X may be images corresponding to Is-
lam and Y to Christianity. Furthermore, the at-
tributes towards which the bias is being measured
may be given as sets A = {a1, a2, ..., aM} and
B = {b1, b2, ..., bM}. For example, A could be
a set of words representing pleasantness, while
B represents unpleasantness. Similarly, many
gender-bias studies consider sets for high paying
vs. low paying professions as attribute sets. A ma-
chine learning model is then said to be fair towards
subgroups X and Y with respect to attributes A
and B if and only if ϕ(X,A,B) ≈ ϕ(Y ,A,B),
where ϕ is some scoring function that scores the
similarity of the sets of attributes A, B to a target
entity X or Y .

Scoring Functions. There can be different
choices for the scoring function ϕ above. Caliskan
et al. (2017) introduced the Caliskan test shown
below in Eq. 1, with ϕ capturing the difference of
the mean of cosine distances between targets and
attributes. This method is ideal for the analysis of
models such as CLIP, since they operate directly
on entity embeddings. The effect size represented
by d(X,Y,A,B) is a measure of the magnitude
of the bias. Larger numbers indicate a stronger
bias, while the sign reflects which target entity the
attributes show a stronger bias towards.

However, for vision–language fusion models
that do not provide explicit access to separate im-
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age/text embeddings, an alternative scoring func-
tion can be defined as the difference in the image–
text matching probabilities, as in the last row of
Eq. 1. Sets X and Y as well as A and B are usu-
ally constructed to have equal number of samples.

d =

mean
x∈X

ϕ(x,A,B)−mean
y∈Y

ϕ(y,A,B)

std-dev
w∈X∪Y

ϕ(w,A,B)
(1)

ϕ(w,A,B) = mean
a∈A

cos(w, a)−mean
b∈B

cos(w, b)

ϕ(w,A,B) = mean
a∈A

σ(w, a)−mean
b∈B

σ(w, b)

Here, cos(·, ·) denotes the cosine similarity of vec-
tors, while σ(·, ·) denotes the probability of a text
and image pair being a match.

Evaluation Pipeline Fig. 1 shows the pipeline
followed in our experiments. The target and at-
tribute stimuli are fed into the model and embed-
dings it emits are used to compute the bias score.

4 The MMBias Dataset

The majority of the work on societal bias analy-
sis so far focuses on unimodal language models.
Although there has been some limited work on
multimodal models, these studies mainly focus on
gender and racial disparities. As a result, bias with
regard to other classes, including religion, national-
ity, sexual orientation, and disability have largely
been unexplored. This has been mainly due to the
lack of standardized benchmark datasets that specif-
ically target these minority groups. To address this
concern, we gather and release the first multimodal
dataset of this size in this line of research that spans
over a wider range of groups. We hope that this
dataset can serve as a benchmark in future research.

Our dataset, referred to as MMBias, contains
3,500 target images and 350 English phrases corre-
sponding to different target concepts. Each target

Target Concept X Target Values {x1, ..., xN}
Religion

Islam, Christianity, Judaism,
Buddhism, Hinduism

Nationality
American, Arab,

Chinese, Mexican

Disability
Physical disability,

Mental disability, No disability
Sexual Orientation Homosexual, Heterosexual

Table 1: MMBias spans over 4 target classes and 14
target groups including 5 major religions, 4 nationalities,
2 forms of disability and sexual orientations.

Figure 3: Gaussian distribution of the image sizes scaled
by a factor of 1,000. Most images are sized around
340x340 pixels.

category has 250 corresponding images obtained
from the popular image uploading website Flickr.
Our dataset also contains 20 textual phrases related
to each target concept, used for bias experiments in
the textual domain.

Data Compilation For gathering the image data,
we invoke the Flickr API and retrieve 1,000 most
relevant images for each target concept using 10–
12 search keywords for each. The keywords are
chosen to be as diverse as possible to minimize
any potential bias in the data gathering process to
the extent possible. Then human annotators are
used to filter out noisy images. Annotators were in-
structed to manually eliminate irrelevant or explicit
content as well as images that contained private in-
formation or names/addresses. In order to balance
the dataset, 250 images were randomly chosen for
each concept out of the filtered images, and we only
consider images with a Creative Commons license.
The processing pipeline and quality control is sim-
ilar to the one used for the creation of Flickr30k
(Young et al., 2014). Furthermore, the textual part
of the dataset contains phrases such as “This is X.”
replacing X with a “Muslim person", “Christian
person", etc. The same aforementioned keywords
were used to retrieve textual data for each concept
using the RelatedWords site3 followed by a similar
data cleaning and noise filtering process.

Table 1 shows the classes MMBias covers as
well as the considered groups in each class. MM-
Bias spans over 4 target classes, including religion,
national origin, disability, and sexual orientation.
In this study, we did not include gender and race,
as there is already a large body of work focusing
on them. For religion, our dataset includes the 5

3relatedwords.org/
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major religions in the world today: Islam, Chris-
tianity, Judaism, Buddhism, and Hinduism. As
for the national origin, MMBias includes images
corresponding to the four nationalities: American
(USA), Chinese, Arab4 (collectively), and Mexican.
Furthermore, another two additional nationalities,
French and Italian, are also included in the textual
phrases in addition to the former. As for disability,
MMBias contains images for two common forms
of disability: physical disability, mental disability
as well as people with no disability. In addition
to these, the textual data includes phrases corre-
sponding to visual disability and hearing disability
as well. Finally, the two most common types of
sexual orientations, homosexuality and heterosex-
uality, are included in MMBias. The selection of
subgroups as well as their pairings was a result of
consulting several social studies that show present
bias against people with disabilities (Dovidio et al.,
2011), homosexuals (Hebl et al., 2002), certain na-
tionalities (Park et al., 2007; Buriel and Vasquez,
1982) and religions (Abid et al., 2021; Rowatt et al.,
2005; Rudman and Ashmore, 2007). However, we
plan to extend our data to a larger pool of classes
and respective subgroups in the future.

Finally, in order to conduct intra-visual bias stud-
ies, MMBias also contains two sets of images cor-
responding to visual pleasantness and unpleasant-
ness, called the valence dataset. These sets were
constructed by following a similar method to Steed
and Caliskan (2021), retrieving images correspond-
ing to pleasant concepts such wealth, peace, babies,
love, butterflies, etc. and unpleasant concepts such
as death, injury, prison, fear, etc.

Analysis. Fig. 2 provides some sample images
taken from the dataset. Each row shows a different
target class. Fig. 3 provides deeper insights into the
sizes of the crawled images. The x-axis reflects the
surface area of the image in pixels, scaled by a fac-
tor of 1,000. As can be seen, image sizes in most
classes follow a normal distribution with a mean
of around 110,000 pixels, translating to approxi-
mately 340x340 images, with the exception of im-
ages corresponding to the nationality class, which
have a slightly higher mean of around 350x350.
The height and width of images does not vary sub-
stantially across the dataset.

4Arab collectively refers to a number of Arab countries
(each also having other cultural groups). We hope that more
specific nationalities and cultural groups can be added in the
future.

Figure 4: t-SNE representation of image embeddings.
Left shows embedding clusters before bias mitigation.
Right shows embedding clusters after bias mitigation.
Both cases show well-separated clusters, suggesting bias
mitigation has negligible effects on cluster separability.

Furthermore, we analyze the separability of our
dataset with regards to image classes. The images
are fed into the CLIP model and the first 100 prin-
cipal components are extracted from the resulting
embeddings, and then t-SNE is applied. Fig. 4
shows the t-SNE representation of the images. We
observe that the dataset can be well-separated form-
ing clearly-defined clusters. For instance, we notice
that different religions form well-separated clusters.
Interestingly the clusters that are more intertwined
correspond to correlated subjects such as the reli-
gion Islam and the Arab nationality designation.
This is not surprising given Islam is particularly
prevalent in Arab countries and thus many of the
images share similar features.

5 Experimental Evaluation

We have conducted three sets of experiments to
assess and quantify the bias in the aforementioned
models: CLIP, ALBEF, and ViLT. The following
sections explain the details of each setting.

5.1 OpenAI CLIP

CLIP is a multimodal vision–language embedding
model originally devised for zero-shot classifica-
tion of images. It utilizes a self-supervised con-
trastive loss to learn a joint embedding space for
both images and text. The model is jointly trained
on the WebImageText dataset, a set of 400 million
paired image–text pairs crawled form the web. Al-
though primarily designed for image classification,
CLIP embeddings have been used in numerous
other downstream applications, making it a prime
candidate for our analysis. The architecture of
CLIP has independent visual and textual encoding
modules providing explicit access to each modal-
ity’s embedding. As a result, it is possible to not
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Figure 5: Top 15 closest attributes returned by CLIP for each target group. Red colors represent negative sentiment
while blue represents positive sentiment. Stereotypical patterns can be seen among different groups.

only analyze the bias across domains but conduct
ablation studies for each module separately as well.
We used the “ViT-B/32” model with the official
CLIP code. Our experiments are as follows.

5.1.1 Cross-Modal Zero-Shot Classification
CLIP was originally introduced as a means for zero-
shot image classification. In this experiment, we
measure bias for this task across different modal-
ities. Given a set of target concept images XI

and Y I , and a set of textual attribute phrases AT

and BT , we use CLIP to perform zero-shot clas-
sification of target images to attribute words. For
each image group, the top 15 classified words are
returned. The attributes are two sets of 60 words
conveying positive5 or negative6 sentiment, many
of which were also included in the original IAT
studies (Bellezza et al., 1986).

The resulting correlation scores are provided in
Fig. 5. Each row shows the top 15 words returned
by the model for each of the target classes. Words
with positive sentiment are blue-colored while ad-
jectives with negative sentiment are given in red.
The number inside each bar as well as the color
intensity represent the degree to which the model
associates that target class with that word. Fig. 5
shows stereotypical patterns emerging, e.g., the

5ptrckprry.com/course/ssd/data/positive-words.txt
6ptrckprry.com/course/ssd/data/negative-words.txt

most associated attributes to Islam and Judaism are
words related to poverty, terror, and extremism such
as: “impoverished”, “vagrant”, ”terrorist“, ”oppres-
sion“, “outcast”, “extremist”, etc., which carry a
highly negative sentiment.

However, unlike Islam and Judaism, in the case
of Buddhism and Christianity, 12 of the 15 top
attributes have positive sentiment. The most asso-
ciated attributes are words resembling peace and
happiness such as: “peace”, “blessing”, “compas-
sionate”, “admirable”, etc., carrying a highly posi-
tive sentiment. This is aligned with societal stereo-
types that certain religions are looked upon less
favorably than others. Similar patterns can be ob-
served for other classes such as nationality as well.
Certain nationalities such as Americans are viewed
as more favorably by the model compared to Arab,
Mexican, and Chinese people. Interestingly, biases
against the Arab category are very similar to biases
against Islam, e.g., both obtaining high scores for
“terrorism”, “extremist”, and “impoverished”. This
likely stems from the the fact that most Arab coun-
tries are predominantly Muslim and the model may
have acquired latent correlations among the two.
For the target class “Mexican”, the highest-scoring
words are “undocumented”, “greed”, and “illegal”,
followed by “impoverished”, which reflects the
typical right-wing media portrayal of this group in
the US. Similarly, Chinese nationals are associated
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with negative attributes relating to poverty and dic-
tatorship. The next category that exhibits a bias is
sexual orientation, where the LGBTQ community
is mostly associated with words such as “offend-
ing”,“vulgar”, “hateful”, “perverse”, etc. Finally,
we can see the large negative sentiment the model
exhibits towards people with disabilities.

5.1.2 Cross-Modal Bias Assessment
This experiment quantifies the bias in CLIP using
Caliskan cosine similarity metric in Eq. 1. Given a
set of target concept images XI and Y I and a set
of textual attribute phrases AT and BT , the goal
is to measure the effect size, d(XI ,Y I ,AT ,BT ),
distance between image target concepts XI , Y I

and textual pleasantness attributes. The results are
provided in the first column of Table 2. Positive
numbers reflect a negative bias towards the first
target X , while negative numbers indicate a posi-
tive bias towards X . The magnitude represents the
intensity to which the bias is present in the model
with regard to test data. The results in Table 2 are
consistent with the results in the zero-shot clas-
sification experiment, confirming certain societal
stereotypes. For instance, in the case of religion,
we have already observed that Islam and Judaism
are tied to negative words much more frequently,
compared to Christianity and Buddhism. Similarly,
here, we observe that bias scores for “Islam vs.
Christianity” and “Judaism vs. Christianity” are
fairly high as well. In the case of “Islam vs. Ju-
daism”, Islam is viewed more unfavorably, reflect-
ing the surge of Islamophobic tendencies in recent
decades. In this regard, the most favorably assessed
religions are Christianity and Buddhism. Similar
trends can be seen when considering nationality
as well. The model shows a negative bias towards
Arab, Chinese, and Mexican people compared to
Americans. This is again consistent with previous
observations in the zero-shot classification experi-
ment. Finally, we find that people with disabilities
as well as the LGBTQ community are viewed more
negatively.

5.1.3 Ablation: Intra-Modal Encoder Bias
Since CLIP provides explicit access to textual
and visual embeddings, we can run ablation
studies by measuring the bias in each module
independently. In order to do so, we mea-
sure the effect size using the Caliskan formula
d(XT ,Y T ,AT ,BT ) for textual data and Image
Association test d(XI ,Y I ,AI ,BI) for images,

Target Target CLIP CLIP CLIP ALBEF ViLT
X Y Cross Textual Visual

R
el

ig
io

n

Muslim Christian 1.72 1.48 1.61 0.37 0.45
Jewish Christian 1.69 1.24 1.43 0.34 0.51
Muslim Jewish 0.47 0.41 0.75 0.03 -0.04
Muslim Buddhist 1.62 0.69 1.53 0.23 0.26

Christian Buddhist -0.75 -0.99 -0.35 -0.14 -0.21
Hindu Buddhist -0.52 0.06 -0.11 0.01 0.01
Jewish Buddhist 1.61 0.31 1.28 0.20 0.30
Muslim Hindu 1.65 0.64 1.49 0.24 0.25

N
at

io
na

lit
y

Arab American 1.28 1.79 1.56 0.11 -0.03
Arab French – 1.79 – – –
Arab Italian – 1.25 – – –

Mexican Arab -0.32 0.24 -0.92 -0.04 0.06
Chinese American 0.89 1.30 1.20 0.03 -0.07
Mexican American 1.13 1.75 1.20 0.07 0.03

D
is

ab
ili

ty Visual Abled – 1.25 – – –
Hearing Abled – 1.13 – – –
Mental Abled 1.48 1.04 1.05 0.37 0.13

Physical Abled 1.25 1.03 1.35 0.02 -0.01

L
G

B
T

Q

LGBTQ Hetero. 1.67 0.93 1.46 0.07 0.10

Table 2: Bias assessment for CLIP, ALBEF, and ViLT
models. CLIP-Cross has numbers for cross-modal bias
assessment experiment, while CLIP-Textual and CLIP-
Visual show effect sizes for intra-modality ablation stud-
ies. Positive numbers favor target Y while negative
numbers favor target X .

where unlike the cross-modal experiment, both tar-
get concepts as well as attributes have the same
modality. These experiments can provide insights
as to which module is more heavily responsible
for the observed bias. Columns 2 and 3 in Ta-
ble 2 present the findings. For the image modal-
ity, we have images with positive and negative va-
lence, analogous to positive and negative-sentiment
words. As we can see, the model demonstrates sim-
ilar bias to the cross-modal case. Similarly, we
notice that “Islam” and “Judaism” attract more neg-
ative bias in comparison with “Christianity” and
“Buddhism”. In some cases the effect size is slightly
different, which can be explained by the fact that
the number of samples in the case of textual data
is smaller, entailing a greater standard deviation,
which in turn alters the effect size.

5.2 Fusion-based Models

We next evaluate two fusion-based models. Al-
though these models typically have independent
textual and visual encoding modules in their lower
layers, their architecture is complemented by a fu-
sion module in higher levels to combine the infor-
mation in different modalities, enabling them to
learn joint embeddings of the visual and textual
domains. This has been shown to be essential for
more complex tasks such as VQA and NLVR that
require more complex reasoning. The first such
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model we consider is ALBEF. Similar to CLIP, AL-
BEF (Li et al., 2021) first learns separate visual and
textual embeddings using Transformer-based im-
age and text encoders coupled with contrastive loss.
However, unlike CLIP, ALBEF further combines
these embeddings by adopting an attention-based
fusion architecture to model more complex interac-
tions between these modalities, and directly aims
to address several vision–language objectives, in-
cluding image–text matching and masked language
modeling. This model is pretrained on conceptual
captions and SBU captions (Sharma et al., 2018;
Ordonez et al., 2011). Furthermore, the model is
trained using momentum distillation to facilitate
learning by adding an auxiliary learning network
to stabilize the leaning process.

ViLT (Kim et al., 2021) is another recent VLP
model that is devised as a more computationally
efficient alternative to CLIP and ALBEF. Unlike
large and computationally-heavy image and text
encoders in CLIP and ALBEF, ViLT utilizes only
shallow linear layers to process the sequence of
word embeddings and image patches of the text–
image input pair. Furthermore, in order to enable
the model to solve complex vision–language tasks
such as VQA, NLVR, and ITM, a Transformer-
based architecture is employed on top to capture the
complex dynamics between the modalities. This
model is trained using a combination of image–
text matching, word patch alignment, and masked
language modelling objectives.

With regard to bias assessment, unlike CLIP,
fusion-based models do not provide explicit access
to separate visual and textual embeddings but rather
provide a combined embedding of the pair. As a
result, computing the Caliskan distance in Eq. 1
is not possible. However, interestingly one of the
objectives these models optimize for is the image–
text matching (ITM) objective. ITM is the problem
of estimating the probability that a given image–
text pair is a match. This task is directly related to
our bias evaluation problem. We can argue that a
model is fair if the probability of assigning pleas-
antness scores is similar across different concepts.
In other words, the following should hold for the
ITM scores:

PITM(A|X)− PITM(B|X) ≈
PITM(A|Y )− PITM(B|Y )

Columns 4 and 5 in Table 2 include the results

for ALBEF and ViLT. The numbers provided are
probabilistic differences and are not comparable to
the Caliskan scores provided for CLIP. In order to
reduce irrelevant noise only the top 15 most signif-
icant matches are considered. Again, we see that
these models exhibit strong biases favoring Chris-
tianity vs. Islam and Judaism, matching Christian
images to positive words 45% more than Muslim
and 51% more than Judaism. However, in case
of nationality, these models show fewer signs of
bias. Furthermore, ViLT and ALBEF show less
bias towards physical disabilities compared to men-
tal disability.

Algorithm 1 Bias Mitigation Algorithm

Require: Image Embedding V I ,
Text Embedding V T ,
Features to remove N ,
Classification Labels L

X ← ∅
Ψ← Compute_Bias(V I , V T )
for d← 1 to len(V I) do

V I ← V I \ vId
V T ← V T \ vTd
if MI(vId, L) < Θ then

ψd ← Compute_Bias(V I , V T )
if ψd < Ψ then

X ← X ∪ {(d, ψd)}
end if

end if
end for
Z ← sortψd

(X)[0 : N ] // Dimensions to remove
X ← X \ Z
return X

6 Bias Mitigation Algorithm

Bias mitigation methods typically fall into one of
three categories: data augmentation (fair resam-
pling), model adjustment, and embedding post pro-
cessing algorithms. Each of these alternatives have
their own benefits and drawbacks, but a major lim-
itation of the first two is that they require retrain-
ing the models. This can be burdensome in many
cases. In particular, we often lack access to the
dataset, the model’s training procedure, or in the
case of large pretrained models, retraining may
also be computationally infeasible on typical hard-
ware and cost budgets. Post-processing methods,
on the other hand, may be invoked as a fast and
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efficient plug-and-play method to modify learned
embeddings without the need for retraining. Since
vision–language tasks are complex, VLP models
usually have large architectures to be able to cap-
ture all the complex dynamics. However, this can
cause them to learn redundant or highly correlated
features, since they are not optimally compressed.
These features are not only computationally waste-
ful but can also amplify model bias. Due to the
high correlation among some features, we can re-
move some without affecting performance, while
simultaneously reducing bias. In order to identify
those features, we directly optimize for the objec-
tive in Eq. 1 by removing features in a greedy man-
ner, pruning N dimensions that cause the largest
decrease in bias effect size. However, we only
consider the features that exhibit a small mutual
information with respect to classification labels. Θ
can be set empirically and this ensures only redun-
dant dimensions are removed. Algorithm 1 details
the steps of our technique.

Bias Before After Reduction
Muslim vs Christian 1.72 0.57 66%
Jewish vs Christian 1.69 0.75 55%
Muslim vs Buddhist 1.62 0.11 93%
Jewish vs Buddhist 1.61 0.30 82%
Muslim vs Hindu 1.65 0.71 57%
Arab vs American 1.28 0.33 74%

Mexican vs American 1.13 0.85 26%
Chinese vs American 0.89 0.56 38%

Mental Dis. vs No Dis. 1.48 0.49 66%
LGBTQ vs Heterosexual 1.67 0.92 45%

Table 3: Bias Mitigation Results. Our algorithm is
able to significantly reduce bias without substantially
affecting performance.

The results of this debiasing method are pre-
sented in Table 3. We removed 54 dimensions
(10% of all dimensions), which leads to up to 93%
bias reduction in some cases. This however only
minimally affects the model’s classification accu-
racy. We have tested the accuracy of the model
on the MMbias dataset as well as the CIFAR-100
dataset. On MMbias, the accuracy dropped by only
1.1% , and on CIFAR100 by only 1.3% from 80.1%
to 78.8%. Furthermore, Fig. 4b shows that even
after removing the aforementioned dimensions, the
embeddings still remain well-separable, confirming
the redundancy of some of the embedding features.

Regarding the choice of N (number of features
removed) in the bias mitigation algorithm, a larger
N will affect the performance of the model more

negatively, as previously observed in other dimen-
sionality reduction algorithm. In order to find a rea-
sonable N we can plot the bias reduction as well as
performance reduction as a function of N . Inspect-
ing this graph allows us to consider the trade-off
between greater bias removal and the loss of ac-
curacy, allowing us to choose an N that decreases
the bias in a meaningful way while not affecting
performance significantly.

7 Conclusion

Most bias analysis studies focus on gender and
racial biases, which is primarily due to a lack of
suitable data to consider further important forms
of bias. In this study, we have compiled a new
multimodal bias assessment dataset called MM-
Bias enabling the study of bias affecting popula-
tion groups largely neglected in prior studies. Our
dataset consists of around 3,500 images and hun-
dreds of phrases covering over 14 minority sub-
groups. Furthermore, based on a formulation of
the bias-fairness problem, we draw on this data to
assess the level of bias in several prominent self-
supervised multimodal models, including CLIP,
ALBEF, and ViLT. Our results show that these mod-
els demonstrate meaningful bias towards certain
groups. Finally, we introduce a novel bias mit-
igation technique designed specifically for large
pretrained models that can be applied as a post-
processing step to reduce bias, and show that it
has negligible effects on classification performance
as well as data separability. Our data and code is
available at github.com/sepehrjng92/MMBias.

Limitations

This work seeks to make a contribution towards
vision–language models that exhibit less biased
behavior. To this end, we provide a large new
dataset, new experimental results, and also investi-
gate a bias mitigation method for pre-trained vision–
language models. Yet, bias measurement data as
well are prone to biases, most notably in the se-
lection of classes and groups, but also with regard
to the particular data instances. We envision that
MMBias will grow to encompass further groups
and additional data in the future, e.g., further ethnic
minorities, sexual identities, and gender identities.
We also hope that our dataset can serve as a starting
point for research on additional natural languages.

Clearly, our bias mitigation algorithm can only
mitigate certain fairly overt expressions of bias in
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vision–language models. Large pre-trained models
have millions of parameters that affect the model
behavior. As vision–language models necessarily
need to rate ties between images and text, they will
continue to prefer or disprefer certain associations,
leading to remnant biases. Still, we hope that our
work will enable the community to pay closer atten-
tion to these challenges and work towards models
that behave in more equitable ways.

Ethics Statement

With our work, we wish to encourage further ana-
lysis of bias in machine learning models. To this
end, we provide data that enables an assessment of
a number of potential manifestations of bias. We
acknowledge that the images harbor a multitude
of different stereotypes that cannot be taken to be
representative of the various groups. Moreover, we
acknowledge that the pairings of classes of peo-
ple adopted thus far in our work leaves out other
groups of people, e.g., further forms of faith and
belief, and also further pairings. We view our work
as a step towards a more inclusive bias assessment
resource that should keep growing in the future.
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