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ABSTRACT
In recent years, we have witnessed profound changes in the way peo-
ple satisfy their information needs. For instance, with the ubiquitous
24/7 availability of mobile devices, the number of search engine
queries on mobile devices has reportedly overtaken that of queries
on regular personal computers. In this paper, we consider the task of
multimodal question answering over structured data, in which a user
supplies not just a natural language query but also an image. Our
system addresses this by optimizing a non-convex objective function
capturing multimodal constraints. Our experiments show that this
enables it to answer even very challenging ambiguous entity queries
with high accuracy.

Keywords
Question Answering; Multimodal; Multimedia Knowledge Bases

1. INTRODUCTION
Motivation. The way people seek information has evolved sub-
stantially in recent years. With the ubiquitous 24/7 availability of
Internet-connected mobile devices, including smartphones, tablet
computers, and augmented reality glasses, the way we rely on com-
puting in our daily lives has undergone changes in numerous impor-
tant respects. With regard to information retrieval, the number of
search engine queries on mobile devices has reportedly surpassed
the corresponding number for regular personal computers.

One important ramification is that mobile device usage tends
to favour other input modalities than the traditional keyboard and
mouse interface. Touch interfaces can directly substitute for some
of the previous forms of interaction. Yet, typing on mobile de-
vices can be cumbersome, especially on the go, as evidenced by the
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phenomenon of very short emails with Please excuse brevity-style
disclaimers.

At the same time, these new device categories open up significant
new opportunities for more natural forms of interaction. For one,
due to advances in speech recognition, mobile device users have
been issuing increasingly longer queries. Indeed, it is now becoming
commonplace for queries to be full-fledged questions. Addition-
ally, smartphones, augmented reality glasses, and other devices are
equipped with cameras enabling us to digitally capture whatever we
are visually perceiving in the form of an image. Alternatively, espe-
cially for items we are not directly perceiving, stylus and touch input
also enables us to sketch things that we may be looking for, or that
are relevant to the query at hand, enabling a novel but little-explored
information seeking paradigm.

Indeed, humans sometimes encounter difficulties in formulating a
natural language query specific enough to make the desired answer
evident and sufficiently unambiguous. Considering the popular
notion of a picture being worth a thousand words, novel input
modalities for search may thus in fact be more than just an alternative.
We conjecture that in certain cases, additional multimodal input may
substantially aid the user in establishing and conveying their search
intent to the question answering engine. This applies to visual
perception of objects or circumstances that may be hard to express
verbally but easy to capture as a picture. This likewise also applies
to mental imagery, which we may have trouble conveying verbally,
while still being able to sketch it.

Contribution. In this paper, we consider the novel task of multi-
modal question answering (QA). As shown in Figure 1, users seeking
information supply not just a natural language query but also a rele-
vant photo or sketch. We focus on questions and answers that can
be addressed using structured knowledge repositories. Our system
tackles this challenging problem in multiple steps. First, we apply
regular linguistic analysis methods to the natural language part of
the query. Our experiments show that this component of our system
alone already delivers competitive results comparable to those of
current question answering systems. Subsequently, we draw on a
novel algorithm based on optimizing a non-convex objective func-
tion with linear constraints. This allows us to jointly capture both
linguistic and multimodal constraints in a single joint optimization
problem. The algorithm derives a structured query that is then used
to obtain the final answers from the knowledge store.

Our experiments are conducted on a set of particularly challenging
questions involving ambiguous entities. The results show that our
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algorithm enables our system to succeed even on particularly difficult
queries that humans have difficulties answering.

2. RELATED WORK
Question Answering. As users are increasingly going beyond sim-
ple keyword queries, we have seen a resurgence of interest in ques-
tion answering. One line of work has focused on question answering
over text [6, 21, 35]. These approaches cast the user’s question into
a keyword query that can be fed to a standard Web or text search
engine. However, only limited attempts are made at interpreting the
query. Another line of research has focused on question answer-
ing based on structured data. Early expert systems and question
answering systems, such as BASEBALL [16], SHRDLU [30] and
LUNAR [31], were limited to a very specific domain. While tra-
ditional systems such as LILOG [18] used extensive hand-crafted
knowledge bases, modern QA systems often rely on the Web of
Linked Data to support open-domain question answering. IBM’s
Watson project [12] combined question answering over text and over
structured data sources. However, their system does not attempt to
interpret questions with complex joins.

Query Analysis. For query analysis, Frank et al. [13] used lexical-
conceptual templates for query generation. Li et al. [22] proposed
question answering for XML data by mapping questions to XQuery
expressions. Unger and Cimiano [29] relied on an ontology-based
natural language grammar, while Zou et al. [37] proposed a graph
algorithm. Large-scale linguistic resources can also be useful for nat-
ural language understanding [25]. In contrast, the semantic parsing
community has focused in part on data-driven solutions [1, 2]. The
OQA [10] system adds question paraphrasing and query reformula-
tion, mining millions of rules from a question corpus. By exploiting
large amounts of data, these systems are able to account for a greater
spectrum of question wordings. This increase in recall, however,
comes at the expense of a decreased precision.

An alternative strategy is to exploit high-quality natural language
processing models by decomposing the task as follows [17, 33]: 1)
question segmentation and phrase detection, 2) mapping phrases to
semantic items, 3) forming semantic triples consisting of such items,
and 4) generating a SPARQL query. We follow a similar strategy,
but consider the setting of both the input query and the knowledge
store being multimodal.

Multimodal Knowledge. Our system is unique in that, unlike pre-
vious work, we consider multimodal queries against a multimodally
enriched knowledge graph. Most image search engines are based on
keywords (e.g., exploiting image labels and tags) or on visual image
similarity. The idea of using sketches to retrieve visually similar im-
ages was proposed by [3, 4]. Their work shows that sketches can be
a natural way for users to express what they have in mind. Recently,
the idea of visual question answering has been proposed [36], which
involves answering questions about an image, such as: What is on
the table?, Who is the man in this picture? Our system, in contrast,
uses image analysis techniques to help us choose answers from a
knowledge base with millions of facts.

3. FRAMEWORK
Overview. We consider the setting of a user expressing an informa-
tion need using a query that consists of both a natural language part
and a visual part. The latter can be either a sketch or a photograph –
both easy to create on mobile devices. In particular, the user has the
ability to provide such images for any entity mentions in the natural
language part of the query.

An overview of our system is given in Figure 2. Given the two
parts of the multimodal query, our system constructs a structured

query that is used to query a large open-domain knowledge graph,
which includes visual knowledge as well. Our system achieves
this by detecting relevant expressions (entity mentions, classes, and
relations) in the query, and mapping these onto entities, classes, and
relations in the knowledge graph. At the same time, the input images
are analysed and compared with images of entities in the knowledge
base. A joint disambiguation is performed based on an integer-linear
program with constraints pertaining to both the natural language and
multimodal parts. The disambiguation results can finally be used to
construct an executable SPARQL query.

Multimodal Knowledge. We assume the existence of a knowl-
edge graph as exemplified in Table 1, with subject-predicate-object
triples. Predicates express relations such as means, type, or
isMarriedTo. Each relation has classes for its domain and range.
The subjects and objects are concepts. These can be entities with
canonical identifiers such as Philadelphia_Phillies and
Philadelphia_(film) that allow us to unambiguously refer
to a given entity. They can also be literals such as strings or numbers,
or classes of entities, e.g. person or film.

We additionally assume that the knowledge graph contains images
for entities, as is the case for Freebase, DBpedia (which now includes
Wikimedia Commons), and others [9, 19, 28, 32]. Additionally,
knowledge bases lacking such images can also be augmented by
drawing on the Web or on large-scale image collections.

Table 1: Excerpt of multimodal knowledge graph.

Subject Predict Object

Tom_Hanks isMarriedTo Rita_Wilson

”Philadelphia” means Philadelphia_(film)

”Philadelphia” means Philadelphia_Phillies

Philadelphia_(film) type film

actor isSubclassOf person

Philadelphia_(film) hasImage

Philadelphia_(film) hasImage

Philadelphia_(film) hasImage

Philadelphia_Phillies hasImage

Philadelphia_Phillies hasImage

Philadelphia_Phillies hasImage

4. GRAPH CONSTRUCTION
Our first goal is to create a disambiguation multigraph capturing

the choices our system will need to consider in interpreting a user
query. Such a multigraph will be of the form G = (V,E), where
V = Vs

⋃
Vp and E = Esim ⋃

Ecoh. Here, Vs is the set of seman-
tic items (s-nodes) in the knowledge graph, Vp is the set of natural
language phrases and images (p-nodes), Esim ⊆ Vp × Vs is a set of
weighted similarity edges that capture the strength of the mapping
of a phrase/image to a semantic item, and Ecoh ⊆ Vs × Vs is a set
of weighted coherence edges that capture the semantic coherence
between two semantic items.

In the example in Fig. 3, we assume a simple user-drawn sketch
of the movie poster for Philadelphia and an image found online for
the entity name Finley.
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Figure 1: Sample questions and queries.

Figure 2: Workflow diagram.

4.1 Phrase Detection and Mapping
To construct such a graph, we begin by detecting relevant phrases

within the input natural language query. Such phrases are either
concept- (entity, class) or relation-denoting ones, and mapped to
corresponding semantic items.

Entities. For entities, a named entity recognizer (NER) tool is used
to detect possible references [23]. Because of its low coverage, we
also directly query the knowledge base to find possible entities that
a given phrase could denote, considering n-grams starting with a
specific POS tag (JJ, NN, RB, or VB) as candidates. Each entity
mention is thus mapped to a set of candidate entities (e.g., Finley to
Karen_Finley and Clement_Finley).

Classes. We look up potential class names p in the knowledge graph.
If phrase p is initially mapped to class c in the knowledge graph,
then p is also mapped to the top-k classes c′1, c′2, c′3 that are similar

to c in terms of the cosine similarity of their corresponding word
vectors, using Google’s word2vec skip-gram with negative sampling
vectors. In our experiments, we choose k = 3. For example, film
may be mapped to both c:film and c:movie. While this method
sometimes helps in finding the right candidates, it may also introduce
noise. For example, actor may be mapped to Actor_(album).
Thus, we will later have to make sure that the algorithm makes
reasonable final choices.

Relations. We use the pattern-to-relation table from PATTY [24],
but extend its recall by directly connecting verbs to all relations they
are mapped to, even if the preposition is missing. For example, play
occurs both in the [[adj]] play in pattern (actedIn relation) and
in [[adj]] play for (playsForTeam relation). Thus, we gener-
ally map play to both playsForTeam and actedIn. The final
decision is made at the later triple generation step.

Table 2: Example of extended pattern-to-relation mappings
Pattern Domain PATTY pattern Range Relation

play person [[adj]] play in team playsForTeam

play in person [[adj]] play in team playsForTeam

play in person [[adj]] play in movie actedIn

married person later married to person isMarriedTo

Image Mapping. Our system matches input images with indexed
images in the knowledge base, choosing as candidates those assigned
to top candidates from the textual phrase mapping. This is based
on the rationale that textual content is typically much more reliable
than mere visual similarities. For similarity computation, we rely
on a multitude of visual features, including GIST, HOG, SIFT and
deep learning models. Details are discussed in Section 6. In the
experiments, we use a threshold (κ = 0.85) to filter out irrelevant
query image links. If the similarity scores for all images is below κ,
the query becomes a text-only query. For each class, there may be
multiple entities, each with multiple images in the KB. Thus, for each
concept (entity or class), the weights wsim

qc for edges between query
image Mq and a semantic item Mc are computed as the average
similarity with all of the images above threshold κ for the concept c.
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Figure 3: Example for Graph Construction. The left side shows the question, which is decomposed into phrases, while the right part
illustrates the mapping of phrases to the multimodally enriched knowledge base.

4.2 Triple Generation
Parse Analysis. To generate triples, we first generate an expanded
syntax tree (T1 in Figure 4) using a dependency parser [23]. We then
traverse T1 to find the best matched relation phrase and its subject
and object. We define 〈n, a1, a2〉 as a potential SPARQL query
pattern, in which n is the relation phrase node, and a1 and a2 are two
arguments. To find possible 〈n, a1, a2〉, we choose edges in T1 with
specific Stanford Dependency tags. As subject relation edges for
a1, we consider those labelled with subj, nsubj, nsubjpass,
csubj, csubjpass, xsubj, or poss. As object relation edges
for a2, we consider: obj, pobj, dobj, and iobj.

Relation Expansion. We define C(n, a1, a2) as the coherence or
similarity between 〈n, a1, a2〉 and a 〈pattern,domain,range〉 entry
in the pattern-to-relation mapping table. For the PATTY patterns,
we only use the verb and the last preposition for matching with n.
The verb in n is matched to the verb of a PATTY pattern using the
word2vec vectors mentioned earlier. If n is composed of a verb
and preposition, we add additional rules to compute exceptions. For
example, “a soccer player transferred from a club" is different from
“a soccer player transferred to a club". Although both patterns have
the same verb transferred, their similarity should be very low.

There are three kinds of nodes in T1. Subject/object nodes refer
to p-nodes with tokens mapped to a class or entity (e.g., nodes who
and actor). Relation nodes refer to p-nodes with tokens mapped to a
relation (e.g., node isMarriedTo). The earlier phrase detection
and mapping produces a set of relation phrases. In Algorithm 1,
for each node ni in T1, we check if a token in node ni occurs in
the relation phrase set. If not, we simply skip to the next node.

Otherwise, we need to merge the syntactic child node n′i with ni.
Take married as an example. We use the relation edges to find the
〈ni, s, o〉 and compute C(ni, a1, a2), selecting the triple 〈married
to, who, actor〉 in Figure 4. Then for each child n′i of ni in the syntax
tree, we check if ni+n

′
i (denoting a concatenation in the order given

by the original sentence, with an extra space in between) is also in
the relation phrase set. If so, we continue to find further children n′′i .
In this case, we find 〈be married to, who, actor〉 in Figure 4. If the
newC(ni+n′i+n′′i , a1, a2) is higher thanC(ni, a1, a2), we delete
the previous child and use the new full concatenation to replace node
ni. Here, we replace node married and married to with be married
to. We continue the same sort of same processing with the newly
updated tree until there are no changes left to be performed. Then,
we proceed to select the best mapping of a relation node in the next
simplified dependency tree, i.e., T2, and so on.

Argument Selection. To find 〈n, a1, a2〉 and compute C(n, a1, a2)
with respect to the arguments, we proceed as follows. Assuming n is
a relation node, we check whether there is a subject relation between
n and one of its children (using the edge labels in the dependency
tree). If so, we add this child to the subject argument a1. Likewise,
the object argument a2 is recognized based on the object relations.
In a dependency tree, passive voice is a special case: If there is
an agent edge between the relation node and the object node, we
swap subject and object.

Assuming a triple 〈n, a1, a2〉 has been found, this triple must
be compatible with a 〈pattern, domain, range〉 entry in the pattern-
to-domain mapping table. We compute the similarity µ1 between
a1 and the domain and a second similarity µ2 between a2 and the
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range, again using the word2vec approach. Then, C(n, s, o) =
0.5× µ1 + 0.5× µ2.

Figure 4: Dependency Tree. Left is original dependency tree;
right is simplified dependency tree.

Algorithm 1 Triple Generation.
Input: Dependency tree T1, relation phrases R.
Output: Simplified dependency tree T2 and triple;
1: Triple set P ← ∅
2: for each node ni ∈ T1 do
3: if token in node ni ∈ R then
4: Find triple 〈ni, a1, a2〉 from T1

5: Compute C(ni, a1, a2)
6: P ← P

⋃
{〈ni, a1, a2〉}

7: for each child n′i of ni do
8: if n′i ∈ R then
9: Find triple (ni + n′i, a1, a2) from T1

10: Compute C(ni + n′i, a1, a2)
11: if C(ni + n′i, a1, a2) > C(ni, a1, a2) then
12: Merge n′i with ni into a new node in T1

13: return modified T1 and P ;

4.3 Edge Weights
Similar to other question answering and entity linking systems

[20, 33, 34], we compute edge weights for the edges between strings
(p-nodes in our graph) and target disambiguations (s-nodes in our
graph), as well as for edges between target disambiguations.

Candidate Edge Weights. Following AIDA [20], the similarity
between a phrase and a candidate entity (wsim

e ) is computed ac-
cording to the prominence of an entity. For instance, compared
with the city of Philadelphia, Philadelphia cream cheese is some-
what less frequent. We use the number of in-links in a reposi-
tory to define the prominence of an entity. For Wikipedia-based
knowledge bases, we use in-links in Wikipedia, while in others, we
could use the triples in the knowledge base directly. It turns out
that both the city and the movie Philadelphia get a higher score
than Philadelphia_(cream_cheese). The second ingre-
dient is based on the overlap between the phrase’s context and
the candidate entity’s context. The score becomes higher as the
overlap increases. For the example phrase, Overlap(“Philadelphia”,
e:Philadelphia)>Overlap(“Philadelphia”, e:Philadelph-
ia_(film)). As for relation and class phrases, we again use

word2vec to compute similarities between phrases and relation/class
semantic items in the knowledge base.

Coherence Edge Weights. For coherence scores between two se-
mantic items, i.e., weights wcoh for edges in Ecoh, we rely on the
Jaccard coefficient, comparing the in-links between two semantic
items. The in-links are again computed either based on Wikipedia
or directly in the knowledge base.

Before adding the edge to the graph, however, we ensure that the
relation s-node is compatible with the corresponding argument s-
node. If not, the coherence score is not computed. In Figure 3, for in-
stance, the phrase be married to is mapped to relations r:isMarriedTo
and r:livesIn. The s-node r:livesIn should be removed:
The domain and range signature of the livesIn relation is (person,
location), while the two arguments of the triple generated from
the question both belong to c:person, which is incompatible.
The phrase actor is mapped to the class c:actor and to the
entity e:Actor_(album), but the latter is removed, again be-
cause it is not compatible with the two relations r:isMarriedTo
and r:livesIn. The phrase acted in is mapped to the relations
r:actedIn and r:directed. In this case, both are kept in the
graph, as they have compatible arguments.

5. JOINT DISAMBIGUATION
The previous steps yield a graph that encodes possible candidates

for the mapping. At this point, we use all of this information to make
a joint decision about the disambiguation, in particular about the
mapping from phrases to semantic items. While some candidates
may have already been pruned out, in most cases, the bulk of the
disambiguation remains to be done, so that each phrase is assigned
to at most one semantic item. In order to consider all mappings
jointly and take into account the many non-trivial interdependencies
and constraints involved in this, we model this problem as a mixed
integer-linear program (MILP). Our overall goal, encoded in the
objective function, is to select the most coherent set of mappings,
which can be regarded as a subgraph of the disambiguation graph.

Variables. We use the following variables:

• Eij ∈ {0, 1} refers to the edges inEsim from p-nodes for con-
cept phrases to s-nodes for entities/classes, and we

ij denotes
their respective weights.

• Mij ∈ {0, 1} refers to edges inEsim from images for phrases
to images for entities, with wm

ij denoting the respective weight
for the multimodal similarity.

• Rij ∈ {0, 1} refers to edges in Esim from p-nodes for rela-
tional phrases to s-nodes for relations in the knowledge base,
and wr

ij denotes their respective edge weights.

• Zij ∈ {0, 1} refers to edges between s-nodes, and wcoh
ij

denotes the corresponding coherence weights.

• Np
i , N

s
j ∈ {0, 1} are variables indicating whether a given

p-node or s-node, respectively, has been selected.

• Cj ∈ {0, 1} indicates whether s-node j is a class.

Objective. The objective is to maximize

α
∑
i,j

we
ijEij + γ

∑
i,j

wr
ijRij + β

∑
i,j

wm
ijMij + τ

∑
i,j

wcoh
ij Zij

subject to the following constraints:

1. ∀i : ΣjEij ≤ 1
A given concept can only be assigned at most one correspond-
ing entity or class.
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2. ∀i : ΣjRij ≤ 1
A relational phrase can only be assigned at most one relation.

3. ∀i : ΣjMij ≤ 1
Each query image may be assigned at most one entity image
in the knowledge base.

4. ∀i, j, i′, j′, I(i, i′), I(j, j′) : Mij > Ei′j′

The image edge Mij should remain consistent with the cor-
responding entity edge Eij (I(k1, k2) indicates that image
node k1 is associated with p-node or s-node k2).

5. ∀i, j : Eij ≤ Np
i , Eij ≤ N s

j , Mij ≤ Np
i , Mij ≤

N s
j , Rij ≤ Np

i , Rij ≤ N s
j

The choice of edges from p-nodes to s-nodes needs to be
consistent with the choice of nodes.

6. ∀i, j : Zij ≤
∑

k [Eki +Rki] , Zij ≤
∑

l [Elj +Rlj ]
If Zij = 1, indicating that s-nodes i and j are both chosen,
then there must be p-nodes mapping to each of them (Eki = 1
or Rki = 1 for some k and Elj = 1 or Rlj = 1 for some l).

7. ∀i, i′, j, j′, T (j, j′) : Cj +Cj′ ≥ Np
i +Eij +Np

i′ +Ei′j′−3
Each triple should have at least one class, where T (j, j′)
indicates that there is a triple with j as subject and j′ as object,
as identified by our triple detection phase (Section 4.2).

After disambiguation, each phrase is mapped to just one semantic
item in the multimodal knowledge store.

Knowledge Base Query Generation. After this final disambigua-
tion, we translate the triples into a SPARQL query over the knowl-
edge base to retrieve the answers from it. For this, wh-words
are replaced by variables, and every semantic class is replaced by
a distinct type-constrained variable. For example, the triple ?x
isMarriedTo actor becomes ?x isMarriedTo ?y; ?y
type actor. Subsequently, the grouped triples are easily trans-
lated into an executable SPARQL query.

6. EXPERIMENTAL EVALUATION

6.1 Setup
Dataset. To evaluate our system, we emulated the kind of evaluation
conducted in the CLEF QALD series of tasks [5], but adapted it to
our setting of multimodal querying. Some questions in QALD do not
contain entities at all, while others contain entity mentions that are
not ambiguous, and even others contain entities that do not appear to
have typically associated images. This is the case, for example, for
many organizations or for certain kinds of people. We thus relied
on student helpers who were instructed to emulate the sentence
structures and kinds of entities used in the QALD evaluations, while
coming up with a total of 20 new queries involving particularly
ambiguous entity names. They were also asked to provide images for
each entity. We focus on sketches created following the MindFinder
approach [3], while in an additional experiment photos were chosen
from Flickr in order to have regular user-generated content, though
these could not be found for all entities.

For tuning, all system parameters were manually selected based on
results on a very small development set of around 5 question-answer
pairs. For the objective function, for instance, we use α = 3

10
,

β = 1
3

, γ = 1
4

, τ = 1
10

.

Knowledge Base. As the knowledge base for our main experiments,
we used YAGO 2 [19], with over 10 million entities and 120 million
facts. We added images by retrieving the top-30 Google image
search results for the long version of an entity name, considering all
disambiguation candidates for strings appearing in the benchmark
query dataset.

Table 3: Questions.

Questions
Q1 Who was married to the actor that starred in

Philadelphia, in which Finley also acted?

Q2 Where is Paris in America?

Q3 When was Charles Bachman born?

Q4 What does Euromos mean?

Q5 Which team did Big Ben play for?

Q6 How many books did Bernstein write?

Q7 What is Grant Hill famous for?

Q8 Was John Backus born in Philadelphia?

Q9 How tall is Michael Jordan?

Q10 When did George Clinton die?

Q11 Who was called Scarface?

Q12 Which book was written by Kerouac in 1988?

Q13 Who founded Philips?

Q14 Which country does the Ganges start in?

Q15 What did a 1911 American look like?

Q16 What is the nickname of San Francisco?

Q17 Is Juliana a dog?

Q18 Which movies did Kurosawa direct?

Q19 Who created the film Beethoven?

Q20 Where does Mona Lisa live?

Table 4: Overall evaluation in terms of accuracy

Full Text Image

Question to Triples 89.3% 89.3% 89.3%

Disambiguation 78.3% 47.8% 65.2%

Final Answers 75.0% 30.0% 60.0%

Humans 10.0%

Humans with access to Knowledge Base 90.0%

6.2 Evaluation Results
Overall Answer Evaluation. Table 4 provides an overall summary
of the results. Most importantly, we find that the joint text+image
disambiguation outperforms other systems with a correct final an-
swer rate of 75%. For comparison, two human assessors were asked
to answer all the questions in two different settings. They were first
asked to provide answers without checking our knowledge base,
obtaining a score of only 10% (2 correct answers) on average. Next,
they were asked to answer questions with the ability to consult the
knowledge base via a browsing and SPARQL interface. Here, they
were able to outperform our system, getting 18 out of 20 (90%)
correct. The two mistakes made by humans were because it can
be hard to distinguish certain kinds of entities, e.g. people, based
on mere sketches. Our system also suffers from this problem but
additionally has to cope with noisy lingustic analyses and limited
coverage also at the previous steps. Several steps need to work out
well for us to ultimately obtain the correct answer. In the following,
we study these steps in more detail.
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Table 5: Evaluation of Components

Variant cov. (micro) prec. (micro) cov. (macro) prec. (macro)

Disambiguation Text 47.8% 50.0% 47.5% 47.5%

Image 65.2% 68.2% 67.5% 67.5%

Full 78.3% 81.8% 82.5% 82.5%

Triple Generation 89.3% 96.2% 85.0% 94.4%

(a) Sketches

(b) Photos

Figure 5: Image Features.

Detailed Analysis. We intercepted our system at the Triple Gen-
eration and Disambiguation stages and let humans evaluate the in-
termediate results. We used two judges with possible adjudication
by a third one to resolve disagreements. Following [33], we report
precision and coverage. Since a query can contain more than one
entity, we provide both micro-averaged and macro-averaged results.

For the triple generation phase in Table 5, ideally we would obtain
28 triples and 23 entity mentions from the 20 queries. However, we
only get 25 triples correct, for a micro-averaged coverage of 89.3%.
The 3 incorrect triples stem from errors in the relation mapping. For
example, the system does not succeed at mapping the phrase the
nickname of, which appears in the question What is the nickname of
San Francisco? Unfortunately, the nickname of was not included in
our pattern-to-relation mapping table from the PATTY resource, so
it could not be mapped to any relation in the knowledge base.

For the disambiguation phase, since all classes were disambiguated
correctly, we only report entity disambiguation results. In Table 5,
we see that the text-only disambiguation mode successfully dis-
ambiguated 10 out of 22 entities in the dataset. 12 phrases were
mapped to incorrect entities when only using text disambiguation,
leading to wrong answers. The image results refer to using only

the query images to disambiguate entity mentions, based on the
image mapping procedure introduced in Section 4.1. The corre-
sponding entity of the best-matching image (with highest wsim

qc )
is chosen as the answer. The image-only approach got 15 cor-
rect. However, image disambiguation on its own is often insuffi-
cient. Distinguishing different people just based on an image is
sometimes impossible, especially if it is just a simple sketch. For
the joint system, the disambiguation rate rises to 78.3%. The an-
swer rate also rises to 15

20
= 75.0%. These results thus establish

the effectiveness of our approach. For example, for the question
When did George Clinton die?, the text-only disambiguation maps
George Clinton to George_Henry_Clinton, which does not
reflect the user intent for this query. The image provides addi-
tional information for the system to realize that the question aims
at George_Clinton_(vice_president). Sometimes both
text and image disambiguation are wrong, particularly if the am-
biguous entities are similar in appearance. For example, different
American automobiles, or even many people may look quite similar.

Image Similarities. We also evaluate the disambiguation by using
query images a) with just black-and-white sketches, and b) color
pictures from Flickr. The annotators drew black-and-white sketches
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Table 6: Comparison of disambiguation methods.

Correct Wrong

Full disambiguation

Question to Triples 25/28 3/28

Disambiguation 18/23 5/23

Final Answers 15/20 5/20

Text-only disambiguation

Question to Triples 25/28 3/28

Disambiguation 11/23 12/23

Final Answers 6/20 14/20

Image-only disambiguation

Question to Triples 25/28 3/28

Disambiguation 15/23 8/23

Final Answers 12/20 8/20

only for the seven entities for which no Flickr photos could be
found. We evaluated the query images using traditional features
(GIST, SIFT, HOG), as well as features from deep learning models
(several different layers from the BVLC CaffeNet1 and GoogleNet
models [27]). As each candidate entity has multiple images, we test
both the maximum and average similarity of these images for each
feature.

The results are given in Table 7 and Figure 5. The deep neu-
ral models perform much better on photos, while GIST is best
for sketches. In virtue of this, we generally use GIST for sketch
mapping, and CaffeNet_fc6, CaffeNet_conv5 for photo mapping
(averaging their similarities). In future work, we could easily also
incorporate face recognition features.
Analysis of Text-based Disambiguation. Additionally, we evalu-
ated our system using text-only disambiguation, comparing it with
other QA systems on the QALD-3 benchmark2 over both DBpedia
and YAGO. Table 8 shows that our system, when set to perform
text-only disambiguation, answers the same number of questions as
CASIA [17], which is more than DEANNA [33], but slightly less
than [37]. There is also another system called squall2sparql [11] that
is able to answer 96 questions correctly, but only if the questions are
first manually rephrased in an artificial controlled language. This
shows that the text-only version of our system achieves comparable
results with other state-of-the-art QA systems and that the additional
improvements that we obtained earlier using multimodal knowledge
do not just stem from having a weak text-only baseline.

6.3 Discussion and Outlook
Although we have focused on ambiguous entities, our system

also supports class queries. For this, we either directly associate
classes with images, or recursively visit subclasses and instances
until we have a set of images for the leaf entity nodes. Figure 6
presents examples of this process. Note that this goes notably beyond
what current image search engines achieve. Given a query for IT
companies with an office building as query image, a regular engine

1
https://github.com/BVLC/caffe/tree/master/models/bvlc_

reference_caffenet
2
http://www.sc.cit-ec.uni-bielefeld.de/qald/

without any type constraint would return numerous different office
buildings similar to the query image, not just those of IT companies.

A related use case, also shown in Figure 6, is automatic set expan-
sion. Given a sufficient number of input images, such as of the Eiffel
Tower, Palace of Westminster, and so on, our system can automati-
cally guess that they all belong to the same class European capital.
It can then return related images such as of Rome, Athens, and so
on, which tend to have other landmarks. Without this sort of type
detection, a regular system simply returns photos that are visually
similar to some of the input images. For some classes of entities,

(a) List retrieval

(b) Set expansion

Figure 6: Example for list retrieval and set expansion.

it is challenging to find typical images, e.g. for organizations, for
which the images are often logos or buildings that are not particularly
distinct. Locations, such as cities, are often represented by land-
marks, and cities without well-known landmarks often have quite
similar images of cityscapes. Thus, whether multimodal queries are
beneficial may depend on the class of entities being considered.

7. CONCLUSION
We have presented the first approach to extend question answer-

ing over structured data to the multimodal case, allowing users to
provide additional images as context to hint at their search intent.
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Table 7: Image Feature Evaluation

GIST SIFT HOG CaffeNet_fc7 CaffeNet_fc6

Photo (max) 15/16 15/16 13/16 16/16 16/16

Photo (avg) 12/16 12/16 10/16 12/16 14/16

Sketch (max) 1/7 2/7 2/7 2/7 2/7

Sketch (avg) 3/7 1/7 1/7 1/7 2/7

CaffeNet_conv5 CaffeNet_conv3 Google_pool5 Google_loss3 Google_output

Photo (max) 16/16 15/16 16/16 16/16 15/16

Photo (avg) 14/16 14/16 13/16 12/16 12/16

Sketch (max) 2/7 2/7 1/7 2/7 2/7

Sketch (avg) 2/7 2/7 1/7 1/7 2/7

Table 8: Comparison of text-only QA systems.

Ours (text) Zou et al. 2014 DEANNA CASIA
29 32 21 29

Our approach relies on a cascade of steps that are used to construct
a graph that captures the relevant decision space. A constrained opti-
mization problem is then solved to obtain the final disambiguation
and generate a knowledge base query to retrieve the answer.

Not only can such multimodal querying in some cases be a more
natural way of conveying one’s search intent, perhaps based on
mental imagery. Our results also demonstrate that a system’s accu-
racy can increase substantially when jointly considering the natural
language and image parts of the query. Our work thus makes im-
portant inroads towards exploring the space of multimodal forms of
knowledge seeking.

One direction for further research is to improve the natural lan-
guage capabilities of our system so as to support a more diverse range
of questions [7], and incorporating dialogue capabilities. Another
direction involves improved fine-grained classification of images and
video obtained by drawing on massive amounts of user-generated
content as training data [8, 14, 26]. With improved models to detect
specific entities such as the Guggenheim Museum in New York, our
system would be able to better narrow down the candidate set even
when the textual query is very unspecific. A third research direction
is to explore means of presenting the retrieval results visually [15].

Overall, given the enormous explosion of online media content,
paired with the ubiquity of mobile devices and the rapid growth
of augmented reality, we believe that in the future there will be an
increasing need for further research on multimodal information and
knowledge management.
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