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Motivation
qDecades of research in ad-hoc retrieval provides useful 

measures to boost the performance

qUnigram matching signals have been successfully 
incorporated in neural IR models [2,4]

q How to incorporate positional matching information 
remains unclear
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QUERY
computer science course Denmark

DOCUMENT
1. Institutes in Denmark provide graduate-level courses in computer science.
2. PCHandle is an online portal for purchasing personal computers in Denmark.

§ Unigram matching: matching individual terms independently
§ Term dependency: “computer science”  
§ Query proximity: the proximity between different matchings

Matching Information to Incorporate 



Model	Unigram	Matching	by	Counting

science

course

Denmark

Rel(Q, D)

§ Given a query Q and a document D
§ Compute the semantic similarity between each term pair, where one term is from Q and another is 

from D (via word2vec)
§ Group such similarity into bins and model the relevance between Q and D with a histogram [2]
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computer

bag-of-word assumption 
(independence among terms)
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Beyond	Unigram	Matching:
Model	Positional	Information
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course

Denmark

computer

1) Retain the similarity into the similarity matrix, keeping 
both similarity and their relative positions [1,3,5]
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course

2) Matching could be modeled based on different local patterns in the 
similarity matrix

3) Individual text windows only include one salient matching pattern  
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Beyond	Unigram	Matching:
Model	Positional	Information
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4) Only retain the salient matching signals for individual query terms  
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course

Denmark

computer

Beyond	Unigram	Matching:
Model	Positional	Information



PACRR:	Position-Aware	Convolutional	
Recurrent	Relevance	Matching
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(1) CNN layers with different 
sizes: 2X2, 3X3, 4X4, etc..

(2) Max-pooling among 
filters

(3) K-max pooling: retain the k 
most salient signals for each query 
term

(4) LSTM layer for combination 



PACRR:	Position-Aware	Convolutional	
Recurrent	Relevance	Matching
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§ CNN kernels  (dozens of filters) in different sizes, corresponding to text windows with different length

computer science course, science course Denmark, etc..computer science, science course, etc..



PACRR:	Position-Aware	Convolutional	
Recurrent	Relevance	Matching

§ Max pooling different filters for individual kernels (individual text windows at most include 
one matching pattern)
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PACRR:	Position-Aware	Convolutional	
Recurrent	Relevance	Matching
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§ K-max pooling for individual query terms, retaining the k most salient signals for individual query terms

K=2, 2X2 kernel K=2, 3X3 kernel



PACRR:	Position-Aware	Convolutional	
Recurrent	Relevance	Matching
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§ A LSTM layer combines signals on different query terms



Evaluation
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q Based on TREC Web Track ad-hoc task 2009-2014, including 300 
queries, 100k judgments and approx. 50 runs in each year

q Measures: ERR@20 
§ A real value measure summarizing the quality of a ranking
§ The higher the better

q Baseline models: MatchPyramid [1], DRMM [2], local model in DUET 
[3], and K-NRM [4]



Training and Validation
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q Employ five years (250 queries) for training and validation

q Randomly reserve 50 queries from the 250 queries for validation, and 
the model selection is per ERR@20

q Test on the remaining year (50 queries)



Training and Validation
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The training loss, ERR@20 and nDCG@20 per iteration on validation data. The x-axis denotes the 
iterations. The y-axis indicates the ERR@20/nDCG@20 (left) and the loss (right).
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q The Neural IR model is employed as a re-ranker, making 
improvements by re-ranking top-k (e.g., top-30) search results from 
initial ranker

q Initial ranker can access the whole collection of documents

q Re-rank search results from a simple ranker, namely, query-likelihood 
model (QL)

Result: RerankSimple
----How good a neural IR model can achieve by reranking QL baseline?



Result: RerankSimple
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§ All neural IR models can improve based on QL search results .
§ PACRR can achieve top-3 by solely re-ranking the search results from query-likelihood model.

----How good a neural IR model can achieve by reranking QL baseline?



q Evaluate on pairwise ranking benchmark. Given (q, d1, d2),             
d1 is more relevant or d2 is more relevant?

q Cover all document pairs that are being predicted

q Calculate the accuracy: the ratio of the concordant pairs 
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Result: PairAccuracy
----How many doc pairs a neural IR model can rank correctly?



Result: PairAccuracy
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§ The average accuracy for PACRR among different label pairs is 72%
§ As reference, human accessors agree with each other by 74-77% according to literature

----How many doc pairs a neural IR model can rank correctly?
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Thank	You!
code: https://github.com/khui/repacrr

contact: khui@mpi-inf.mpg.de
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