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Motivation

I Decades of research in ad-hoc retrieval provides useful

measures to boost the performance

o Unigram rnatching signals have been successfully

incorporated in neural IR models [2,4]

J How to incorporate positional matching information

remains unclear
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Matching Information to Incorporate
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QUERY

computer sclence course Denmark

DOCUMENT

1. Institutes in Denmark provide graduate—level courses in computer science.

2. PCHandle is an online portal for purchasing personal computers in Denmark.
\

a Unigram matching: matching individual terms independently
(44 . »
" Term dependency: computer science

" Query proximity: the proximity between different matchings



Model Unigram Matching by Counting

Given a query Q and a document D
Compute the semantic similarity between each term pair, where one term is from Q and another is
from D (via word2vec)

Group such similarity into bins and model the relevance between Q and D with a histogram [2]
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bag—of—word assumption
(independence among terms)



Beyond Unigram Matching:
Model Positional Information

1) Retain the similarity into the similarity matrix, keeping

both similarity and their relative positions [1,3,5]
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Beyond Unigram Matching:
Model Positional Information
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2) Matching could be modeled based on diftferent local patternsin the
simﬂarity matrix

3) Individual text windows only include one salient matching pattern



Beyond Unigram Matching:
Model Positional Information
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4) Only retain the salient matching signals for individual query terms



PACRR: Position-Aware Convolutional
Recurrent Relevance Matching
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(1) CNN layers with different (3) K-max pooling: retain the k
sizes: 2X2, 3X3, 4X4, etc.. most salient 51gnals for each query
term
(2) Max—pooling among (4) LSTM layer for combination

filters
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PACRR: Position-Aware Convolutional
Recurrent Relevance Matching
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" CNN kernels (dozens of filters) in different sizes, corresponding to text windows with different length
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computer science, science course, etc.. computer science course, science course Denmark, etc..
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PACRR: Position-Aware Convolutional
Recurrent Relevance Matching
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" Max pooling different filters for individual kernels (individual text windows at most include

one matching pattern)
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PACRR: Position-Aware Convolutional
Recurrent Relevance Matching
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" K-max pooling for individual query terms, retaining the k most salient signals for individual query terms

K=2, 2X2 kernel K=2, 3X3 kernel
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PACRR: Position-Aware Convolutional
Recurrent Relevance Matching
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= ALSTM layer combines signals on different query terms



Evaluation

(

(1 Based on TREC Web Track ad-hoc task 2009-2014, including 300

queries, 100k judgments and approx. 50 runs in each year

(1 Measures: ERR@?20

A real value measure summarizing the quality of a ranking

The higher the better

\

[ Baseline models: MatchPyramid [1], DRMM [2], local model in DUET

\

[3], and K-NRM [4]
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Training and Validation

~
n Employ five years (250 queries) for training and validation

the model selection is per ERR(@20

(] Test on the remaining year (50 queries)
\-

d Randomly reserve 50 queries from the 250 queries for validation, and




Training and Validation

loss:118 0.782 Err:44 0.251 nDCG:44 0.310
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The training loss, ERR(@20 and nDCG(@?20 per iteration on validation data. The x-axis denotes the
iterations. The y-axis indicates the ERR(@20/nDCG(@20 (left) and the loss (right).



Result: RerankSimple

----How good a neural IR model can achieve by reranking QL baseline?

4 )

(J The Neural IR model is employed as a re-ranker, making
improvements by re-ranking top-k (e.g., top-30) search results from

initial ranker
(J Initial ranker can access the whole collection of documents

(d Re-rank search results from a simple ranker, namely, query-likelihood

model (QL)
- _/




Result: RerankSimple

----How good a neural IR model can achieve by reranking QL baseline?

B PACRR
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B MatchPyramid
B K-NRM
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ERR@20

" All neural IR models canimprove based on QL search results .

" PACRR can achieve top-3 by solely re-ranking the search results from query-likelihood model.
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Result: PairAccuracy

----How many doc pairs a neural IR model can rank correctly?

-

[ Evaluate on pairwise ranking benchmark. Given (q, d;, d,),

d, is more relevant or d, is more relevant?

52

J Cover all document pairs thatare being predicted

U Calculate the accuracy: the ratio of the concordant pairs

\_




Result: PairAccuracy

----How many doc pairs a neural IR model can rank correctly?
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" The average accuracy for PACRR among different label pairs is 72%

" Asreference, human accessors agree with each other by 74-77% according to literature
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Thank You!

code: https:// github. com /khui/repacrr

contact: khui(@mpi-inf.mpg.de
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