

PACRR: A Position-Aware Neural IR Model for Relevance Matching

Kai Hui¹, Andrew Yates¹, Klaus Berberich¹, Gerard de Melo² ¹Max Planck Institute for Informatics {khui, kberberi, ayates}@mpi-inf.mpg.de ² Rutgers University, New Brunswick gdm@demelo.org

Conference on Empirical Methods in Natural Language Processing 2017

Motivation

Decades of research in ad-hoc retrieval provides useful measures to boost the performance

□ Unigram matching signals have been successfully incorporated in neural IR models [2,4]

☐ How to incorporate positional matching information remains unclear

Matching Information to Incorporate

QUERY

computer science course Denmark

DOCUMENT

- 1. Institutes in **Denmark** provide graduate-level **courses** in **computer science**.
- 2. PCHandle is an online portal for purchasing personal **computers** in **Denmark.**
- Unigram matching: matching individual terms independently
- Term dependency: "computer science"
- Query proximity: the proximity between different matchings

Model Unigram Matching by Counting

- Given a query Q and a document D
- Compute the semantic similarity between each term pair, where one term is from Q and another is from D (via word2vec)
- Group such similarity into bins and model the relevance between Q and D with a histogram [2]

bag-of-word assumption (independence among terms)

Beyond Unigram Matching: Model Positional Information

 Retain the similarity into the similarity matrix, keeping both similarity and their relative positions [1,3,5]

Beyond Unigram Matching: Model Positional Information

- 2) Matching could be modeled based on different local patterns in the similarity matrix
- 3) Individual text windows only include one salient matching pattern

Beyond Unigram Matching: Model Positional Information

4) Only retain the salient matching signals for individual query terms

• CNN kernels (dozens of filters) in different sizes, corresponding to text windows with different length

1	0	1	0	0	0
0	1	0	0	1	0

 \bigcirc \bigcirc \bigcirc

computer science, science course, etc..

computer science course, science course Denmark, etc..

 Max pooling different filters for individual kernels (individual text windows at most include one matching pattern)

• K-max pooling for individual query terms, retaining the k most salient signals for individual query terms

K=2, 3X3 kernel

A LSTM layer combines signals on different query terms

Evaluation

- Based on TREC Web Track ad-hoc task 2009-2014, including 300 queries, 100k judgments and approx. 50 runs in each year
- $\Box \text{ Measures: ERR} @ 20 \\$
- A real value measure summarizing the quality of a ranking
- The higher the better
- Baseline models: MatchPyramid [1], DRMM [2], local model in DUET
 [3], and K-NRM [4]

Training and Validation

Employ five years (250 queries) for training and validation

Randomly reserve 50 queries from the 250 queries for validation, and the model selection is per ERR@20

Test on the remaining year (50 queries)

Training and Validation

The training loss, ERR@20 and nDCG@20 per iteration on validation data. The x-axis denotes the iterations. The y-axis indicates the ERR@20/nDCG@20 (left) and the loss (right).

Result: RerankSimple

----How good a neural IR model can achieve by reranking QL baseline?

- The Neural IR model is employed as a re-ranker, making improvements by re-ranking top-k (e.g., top-30) search results from initial ranker
 - Initial ranker can access the whole collection of documents
- Re-rank search results from a simple ranker, namely, query-likelihood model (QL)

Result: RerankSimple

----How good a neural IR model can achieve by reranking QL baseline?

- All neural IR models can improve based on QL search results .
- PACRR can achieve top-3 by solely re-ranking the search results from query-likelihood model.

Result: PairAccuracy

----How many doc pairs a neural IR model can rank correctly?

□ Evaluate on pairwise ranking benchmark. Given (q, d_1, d_2) , d₁ is more relevant or d₂ is more relevant?

- Cover all document pairs that are being predicted
- □ Calculate the accuracy: the ratio of the concordant pairs

Result: PairAccuracy

----How many doc pairs a neural IR model can rank correctly?

- The average accuracy for PACRR among different label pairs is 72%
- As reference, human accessors agree with each other by **74–77%** according to literature

Reference

[1] Pang, Liang, Lan, Yanyan, Guo, Jiafeng, Xu, Jun, and Cheng, Xueqi . "A Study of MatchPyramid Models on Ad-hoc Retrieval." In: Proceedings of the Neu-IR 2016 SIGIR Workshop on Neural Information Retrieval. Neu-IR '16

[2] Guo, Jiafeng, Fan, Yixing, Ai, Qingyao, and Croft, W. Bruce (2016). "A deep relevance matching model for ad-hoc retrieval." In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. CIKM '16

[3] Mitra, Bhaskar, Diaz, Fernando, and Craswell, Nick . "Learning to Match using Local and Distributed Representations of Text for Web Search." In: Proceedings of the 26th International Conference on World Wide Web. WWW '16

[4] Xiong, Chenyan, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. "End-to-end neural adhoc ranking with kernel pooling." In: Proceedings of the 40th annual international ACM SIGIR conference on Research and development in information retrieval. SIGIR '17

[5] Hui, Kai, Yates, Andrew, Berberich, Klaus, and Melo, Gerard de. "Position-Aware Representations for Relevance Matching in Neural Information Retrieval." In: Proceedings of the 26th International Conference on World Wide Web Companion. WWW '17

Thank You!

code: <u>https://github.com/khui/repacrr</u> contact: khui@mpi-inf.mpg.de

Conference on Empirical Methods in Natural Language Processing 2017