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ABSTRACT

Scalability in terms of object density in a scene is a primary challenge in unsu-
pervised sequential object-oriented representation learning. Most of the previous
models have been shown to work only on scenes with a few objects. In this pa-
per, we propose SCALOR, a probabilistic generative world model for learning
SCALable Object-oriented Representation of a video. With the proposed spatially-
parallel attention and proposal-rejection mechanisms, SCALOR can deal with
orders of magnitude larger numbers of objects compared to the previous state-
of-the-art models. Additionally, we introduce a background module that allows
SCALOR to model complex dynamic backgrounds as well as many foreground
objects in the scene. We demonstrate that SCALOR can deal with crowded scenes
containing up to a hundred objects while jointly modeling complex dynamic back-
grounds. Importantly, SCALOR is the first unsupervised object representation
model shown to work for natural scenes containing several tens of moving ob-
jects. https://sites.google.com/view/scalor/home

1 INTRODUCTION

Unsupervised structured representation learning for visual scenes is a key challenge in machine
learning. When a scene is properly decomposed into meaningful entities such as foreground objects
and background, we can benefit from numerous advantages of abstract symbolic representation.
These include interpretability, sample efficiency, the ability of reasoning and causal inference, as
well as compositionality and transferability for better generalization. In addition to symbols, another
essential dimension is time. Objects, agents, and spaces all operate under the governance of time.
Without accounting for temporal developments, it is often much harder if not impossible to discover
certain relationships in a scene.

Among a few methods that have been proposed for unsupervised learning of object-oriented repre-
sentation in temporal scenes, SQAIR (Kosiorek et al., 2018) is by far the most complete model.
As a probabilistic temporal generative model, it can learn object-wise structured representation
while modeling underlying stochastic temporal transitions in the observed data. Introducing the
propagation-discovery model, SQAIR can also handle dynamic scenes where objects may disap-
pear or be introduced in the middle of a sequence. Although SQAIR provides promising ideas and
shows the potential of this important direction, a few key challenges remain, limiting its applicability
merely to synthetic toy tasks that are far simpler than typical natural scenes.

The first and foremost limitation is scalability. Sequentially processing every object in an image,
SQAIR has a fundamental limitation in scaling up to scenes with a large number of objects. As
such, the state-of-the-art remains at the level of modeling videos containing only a few objects,
such as MNIST digits, per image. Considering the complexity of typical natural scenes as well
as the importance of scalable unsupervised object perception for applications such as self-driving
systems, it is thus a challenge of the highest priority to scale robustly to scenes with a large number
of objects. Scaling up the object-attention capacity is an important problem because it allows us to
maximize the modern parallel computation that can maximize search capacity. This is contrary to
humans, who can attend only to a few objects at a time in a time-consuming sequential manner. The
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AlphaGo system (Silver et al.}[2017) is an example demonstrating the power of such parallel search
(attention) beyond human capacity.

The second limitation is that previous models including SQAIR lack any form of background mod-
eling and thus only cope with scenes without background, whereas natural scenes usually have a
dynamic background. Thus, a temporal generative model that can deal with dynamic backgrounds
along with many foreground objects is an important step toward natural video scene understanding.

In this paper, we propose a model called SCALable Sequential Object-Oriented Representation
(SCALOR). SCALOR resolves the aforementioned key limitations and hence can model complex
videos with several tens of moving objects along with dynamic backgrounds, eventually making the
model applicable to natural videos. In SCALOR, we achieve scalability with respect to the object
density by parallelizing both the propagation and discovery processes, reducing the time complexity
of processing each image from O(N) to O(1), with N being the number of objects in an image.
We also observe that the sequential object processing in SQAIR, which is based on an RNN, not
only increases the computation time but also deteriorates discovery performance. To this end, we
propose a parallel discovery model with superior discovery capacity and performance. SCALOR
can also be regarded as a generative tracking model since it not only detects object trajectories but
is also able to predict trajectories into the future. In our experiments, we demonstrate that SCALOR
can model videos with nearly one hundred moving objects along with a dynamic background on
synthetic datasets. Furthermore, we showcase the ability of SCALOR to operate on natural-scene
videos containing tens of objects with a dynamic background.

The contributions of this work are: (i) We propose the SCALOR model, which significantly im-
proves (two orders of magnitude) the scalability in terms of object density. It is applicable to nearly
a hundred objects while providing more efficient computation time than SQAIR. (ii) We propose
parallelizing the propagation—discovery process by introducing the propose—reject model, reducing
the time complexity to O(1). (iii) SCALOR can model scenes with a dynamic background. (iv)
SCALOR is the first probabilistic model demonstrating its working on a significantly more complex
task, i.e., natural scenes containing tens of objects as well as background.

2 PRELIMINARIES: SEQUENTIAL ATTEND INFER REPEAT (SQAIR)

SQAIR models a sequence of images X = Xi.7 by assuming that observation X; at time t is gener-
ated from a set of object latent variables 2{9 = TZtnOneo, with Oy the set of objects present at time
t. Latent variable Z; corresponding to object n consists of three factors (z{'; Z{R"; ZPE"), which
represent the existence, pose, and appearance of the object, respectively. SQAIR also assumes that
an object can disappear or be introduced in the middle of a sequence. To model this, it introduces the
propagation—discovery model. In propagation, a subset of currently existing objects is propagated
to the next time-step and those not propagated (e.g., moved out of the scene) are deleted. In discov-
ery, after deciding how many objects D¢ will be discovered, D¢ objects are newly introduced into
the scene. Combining the propagated set Py and discovered set D¢, we obtain the set of currently
existing objects O¢. The overall process can be formalized as:

i h'd )
p(xiT; 25 D) =p(D1;20)  p(xddz) p(Dy; zPjzl) plizd 1) - (1)
t=2

For SQAIR, we use Zig (“fg” standing for foreground) to denote Z? because SQAIR does not have
any latent variables for background. Due to the intractable posterior, SQAIR is trained through
variational inference with the following posterior approximation:

Y Y
q(Dy.T; Zflg;zjl:T) = q(D¢; ZFth; Zf) 4(Zt;njZe—1;n; th) : 2
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SQAIR is trained using the importance-weighted autoencoder IWAE) objective (Burda et al.,[2015).
The VIMCO estimator (Mnih & Rezendel 2016)) is used to backpropagate through the discrete ran-
dom variables while using the reparameterization trick (Kingma & Welling} [2013} [Williams), {1992
for continuous variables. SQAIR has two main limitations in terms of scalability. First, for prop-
agation, SQAIR relies on an RNN, which sequentially processes each object by conditioning on
previously processed objects. Second, the discovery is also sequential because it uses RNN-based
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discovery based on AIR (Eslami et al., 2016). Consequently, SQAIR has a time complexity of
O(jOy)) per step t. In|Crawford & Pineau (2019b)), the authors demonstrated that this sequential
discovery can easily fail beyond the scale of a few objects. Moreover, SQAIR lacks any model for
the background and its temporal transitions, which is important in modeling natural scenes.

3 SCALOR

In this section, we describe the proposed model, SCALOR. We first describe the generative process
along with the proposal-rejection mechanism, which is designed to prevent propagation collapse,
and then the inference process and learning.

3.1 GENERATIVE PROCESS

SCALOR assumes that an image X¢ is generated by background latent leg and foreground latent

Z{g . The foreground is further factorized into a set of object representations Zlc = fZtnOneo,- In
pres.

SCALOR, we represent an object by Z¢;n = (Z¢:y ; ZWhere ZWh"“) similarly to SQAIR. The appearance

representation Z}”fr‘]"“ is a continuous vector representation, and ZWhere is further decomposed into

the center position z{,, scale zEa¢, and depth ZClepth The depth representation, which is missing
in SQAIR, represents the relative depth between objects from the camera viewpoint. This depth
modeling helps deal with object occlusion. The foreground mask My, obtained from z{ hat js used to
distinguish background and foreground. We adopt the propagation—discovery model from SQAIR,
but improve it in such a way to resolve the scalability problem. The generative process of SCALOR
can be written as:

p(xuT;ze) = pED)@E)  pxdze) iz z8) p(zPizl ) p(liz< 3)
vrizT) =P ”W—%? gz 2 ez peulz-y

rendering background transition ~ discovery propagation

where zy = (Z'fg; Zig). As shown, the generation process is decomposed into four modules: (i)
propagation, (ii) discovery, (iii) background transition, and (iv) rendering.

Propagation. The propagation in SCALOR is modeled as follows:
P Y pres where what ngr;
P(zrjz<) = P(Zgniz<tn) P(Zgn JZ<tn) P(Zgn'iz<en) 75 4)
neO¢

where p(z¢:, jZ<t;n) is a Bernoulli distribution with parameter ;. The distributions of “what” and
“where” are defined only when the object is propagated. To implement this, for each object n we
assign an object-tracker RNN denoted by its hidden state h.,. The RNN is updated by input zt., for
all t where the object n is present in the scene. The parameter ¢;n is obtained as t:n = Fmip(he:n).
If z{'7 = 0, the object N is not propagated and the tracker RNN is deleted. Importantly, unlike the
RNN-based sequential propagation in SQAIR, the propagation in SCALOR is fully parallel.

Discovery by Proposal-Rejection. The main contribution in making our model scalable with re-
spect to the the number of objects is our new discovery model that consists of two phases: proposal
and rejection. In the proposal phase, we assume that the target image can be covered by H W
latent grid cells, and we propose an object latent variable Z¢.n.\ per grid cell. This proposal phase
can be written as:

res where ; whal Zﬁre‘ W
P(Z¢ JZP) = (zt h-wlZt D)= (Z‘E h: wiZt D) p(ztlr: wlZt D) Pz tr11 leZt ) o @)
h;w=1 h;w=1

In the rejection phase, our goal is to reject some of the proposed objects if a proposed object largely
overlaps with a propagated object. We realize this by using the mask variable my.. Specifically,
if the overlapping area between the mask of a proposed object and that of a propagated object is
over a threshold , we reject the proposed object This procedure can be described as (i) pro-
posal: 2P p(Zt jzl) and (ii) accept-reject: zP = Fueceprreject(ZF;2F; ). In this way, the final
discovery set zP is always a subset of the proposal set 27, i.e., zP zP. Although we use a
deterministic function for the rejection, it can be a design choice to implement this as a stochas-
tic decision. While one rationale behind this design is to reflect an inductive bias of a Gestalt
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Figure 1: SCALOR inference procedure: (A) Proposal, (B) Accept-Reject, (C) Propagation, (D) Background
Module and Rendering Process. (A) The proposal module takes the input image and propagation mask and
combines them to make the proposal representation. (B) From the proposal representation, the proposal mask
is generated, and then compared to the propagation mask to make an accept-reject decision. Only the accepted
proposals are considered as discovered objects. (C) The tracker RNNs decide what and where to propagate after
looking at the input image. The gray boxes represent what is not propagated. (D) Given inferred foreground
objects and the input image, the background module infers the background representation. The rendering
process combines the foreground and background representations according to the foreground mask assignment

principle saying that two objects cannot coexist in the same position, we shall also see later fur-

ther reasons as to Wfa this design is effective. The nal discovery model can then be written as:

p(zPjzP) = p(zPizl) ~ -1 P22 i202P; ); where the acceptance model is:

D i P.5D. y\_ P..D. h accept h accept
p(zt;h;w 1Z¢ 17, )_ f(Zsﬁ;Cﬁijt 2 )p(z'\t,;’h;e\;\;e)z"h'w p(z'\tlglh:ﬁ )z"h’w . (6)

Background Transition. Unlike SQAIR, SCALOR is endowed with a background model. The

background image is encoded int®adimension continuous vect(ZIFg from the background tran-
b

sition p(z; g’jzi’fJ ; z{g). The background RNN encodes the temporal transition of background images.
Rendering. The implementation of the rendering process is the same as in SPAIR (Crawford &
Pineaulj, 2019b), except that we process the objects in parallel. Implementation details are shown in
Appendix A.

3.2 LEARNING AND INFERENCE

Due to the intractability of the true posterior distributip(zy.1jX1:7), we train our model using
variational inference with the following posterior approximation:

.
AzeTixet) = A@izasx 0= a@z%zdx) a@Zlizlix Da@ljzaix ) (7)
t=1 t=1

Posterior Propagation. g(zf jz« ;X ) is similar to the propagation in generation, except that we
now provide observatior ; through an RNN encoding. Here, the propagation for each ohject

is done byg(zin jz<tn ;X ) using attentiora., = fax(X () on the feature map for objent To
compute the attention, we use the previous posiziifﬁ;n as the center position and extract half

the width and height of the convolutional feature map using bilinear interpolation. This attention
mechanism is motivated by the observation that only part of the image contains information for
tracking an object and an inductive bias that objects cannot move a large distance within a short
time span (i.e., objects do not teleport).

Posterior Discovery. The posterior discovery also consists of proposal and rejection phases. The

main difference is that we now compute th&proposahatially-paralIelmanner by conditioning on

the observation® ¢, i.e.,q(zPjzl;x ) = -t A(Z0h i2f ;X 1). Here, the observation

is encoded into the feature map of dimensionadlity W D using a Convolutional LSTM (Xingjian

et al., 2015). Then, from each feature we ob@,pw . Importantly, this is done over all the feature
cells h;w in parallel. A similar approach is used in SPAIR (Crawford & Pineau, 2019b), but it
infers the object latent representations sequentially and thus is dif cult to scale to a large number
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of objects (Lin et al., 2020). Even if this spatially-parallel proposal plays a key role in making our
model scalable, we also observe another challenge due to this high capacity of the discovery module.
The problem is that the discovery module tends to dominate the propagation module and thus most
of the objects in an image are explained by the discovery module, i.e., objectsls@vered at

every time-step while nothing is propagated. We call this prolgespagation collapse

Why would the model tend to explain an image through discovery while suppressing propagation?
First, the model does not care where—either from discovery or propagation—an object is sourced
from as long as it can make an accurate reconstruction. Second, the propagation step performs a
much harder task than the discovery. For the propagation to properly predict, tradkeds to

learn to nd the matching objecfrom an image containing many objects. Although the propaga-
tion attention plays an important role in balancing the discovery and propagation, we found that it
does not eliminate the problem of re-discovery, and without rejection, its effectiveness varies across
different experiment settings. On the contrary, the discovery module does not need to solve such a
dif cult association problem because it only perforfegsal image-to-latents encoding without as-
sociating latents of the previous time-step. Therefore, it is much easier for the discovery encoder
to produce latents that are more accurate than those inferred from propagation. If we limit the ca-
pacity of the discovery module and sequentially process objects like in SQAIR, we may mitigate
this problem because the propagation module is naturally encouraged to explain what this weakened
discovery module cannot. This approach, however, cannot scale.

We employ two techniques to resolve the aforementioned problem. First, we simply bias the initial
network parameter so that it has a high propagation probability at the beginning of the training. This
helps the model prefer to explain the observation rst through propagation. The second technique is
our proposal-rejection mechanism, which is implemented the same way as in the generation process.
This prevents the discovery model from redundantly explaining what is already explained by the
propagation module. The posterior for the discovery model can be written as:

azPizlix )= APzl ix ) PaccenlZinw 120 20D ; ®)
hw =1
where the acceptance modebigcen(z5,,, 12F:2P) = p(zffey iz ;2P )(p(2ihere)p(2iha )) i .
Posterior Background. The posterior of the backgroummzfgjz{g; Xt) is conditioned on the input

image and currently existing objects. Here, we provide the foreground latents so that the remaining
parts in the image can be explained by the background module.

Training. We train our model by maximizing the following evidence lower bourfd ) =

X h i
Eq (z« ix« ) Eq (zijza :x o [0gp (Xtjzt)] KL [ (Ztjz<t ;% ) Kp (ztjz<)] = (9)
t=1
We use the reparameterization trick (Williams, 1992; Kingma & Welling, 2013) for continuous ran-
dom variables such &' and the Gumbel-Softmax trick (Jang et al., 2016) for discrete variables
such agP™s. We found that our proposed model works well and robustly with these simpler training
methods than what is used in SQAIR, i.e., VIMCO and IWAE.

4 REeLATED WORK

Different approaches have been taken to tackle the problem of unsupervised scene representation
learning. Object-oriented models such as AIR (Eslami et al., 2016) and SPAIR (Crawford & Pineau,
2019b) decompose scenes into latent variables representing the appearance, position, and size of the
underlying objects. While AIR makes use of a recurrent neural network, SPAIR applies spatially
invariant attention to extract local feature maps. Although the latter provides better scalability than
AIR, it is still limited as it performs sequential inference on objects. SQAIR (Kosiorek et al., 2018),
discussed in Section 2, extends the ideas proposed in AIR to temporal sequences. On the other
hand, scene-mixture models (Greff et al., 2017; Van Steenkiste et al., 2018; Burgess et al., 2019;
Greff et al., 2019; Engelcke et al., 2019) decompose scenes into a collection of components, each
being a full-image level representation. Although such models allow decomposition of the input
image into components, they are not object-wise disentangled as multiple objects can be in the same
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Figure 2: Quantitative result showing superior performance of SCALOR (SC) compared to SQAIR (SQ). (a)
Tracking Accuracy (b) Object Count and Reconstruction Error

component. Furthermore the obtained representation does not contain explicit interpretable features
like position and scale, etc. SPACE (Lin et al., 2020) combines both of the above approaches by
using object detection for foreground and mixture decomposition for background. It improves upon
SPAIR by parallelizing the latent inference process.

DDPAE (Hsieh et al., 2018) is another object-oriented sequential generative model that models each
object with an appearance and a position vector. The model assumes the appearance of an object to
be xed, and thus shares the content vector across different time-steps. NEM (Greff et al., 2017) and
RNEM (Van Steenkiste et al., 2018) introduce a spatial mixture model to disentangle the scene into
multiple components representing each entity. Since each component generates a full scene image,
the latent representations are not interpretable. Tracking-By-Animation (He et al., 2019) introduces
a deterministic model to tackle the task of object tracking in an unsupervised fashion. Furthermore,
there is a substantial amount of work on object tracking from the computer vision community using
the same “bounding box-representation approach proposed in SCALOR (Kosiorek et al., 2017;
Ning etal., 2017; Nam & Han, 2016; Tao et al., 2016), but such methods use provided labels to tackle
the problem of object tracking and thus are usually fully or semi-supervised and not probabilistic
object-oriented models.

We also note that Crawford & Pineau (2019a) has independently and concurrently developed a
similar architecture to ours. This model also emphasizes the scalability problem with a similar idea
motivated by parallelizing SPAIR and extending it to sequential modeling. The main differences are
the usage of the proposal-rejection mechanism and the background modeling that make our model
work on complex natural scenes.

5 EXPERIMENTS

In this section, we describe the experiments conducted to empirically evaluate the performance of
SCALOR. We propose two tasks, (i) synthetic MNIST/dSprites shapes and (ii) natural-scene CCTV
footage of walking pedestrians. We will show SCALOR's abilities to detect and track objects,

to generate future trajectories, and to generalize to unseen settings. Furthermore, we provide a
guantitative comparison to state-of-the-art baselines.

5.1 TAsk 1: LARGE-SCALE MNIST AND DSPRITESSHAPES

We rst evaluate our model on datasets of moving dSprites shapes as well as moving MNIST digits.
In all experiments, the image sequence covers a @4 partial view of the center of the whole
environment. Therefore, while there is a xed number of objects in the environment at each time-
step, only a subset of them are visible in the observed image. The environment size is customized
for each setting in a way that objects can conveniently move out of the viewpoint completely and
re-enter within a few time-steps. We test on ve different scale settings. In each setting, the number
of objects in each trajectory is sampled uniformly from an inters@h[ maX. Eachscale setting

is speci ed with a triplet(min; avg max, wheremin andmaxare as mentioned aralgrepresents

the average number of visible objects in the trajectories in that setting. The ve settings are referred
to as Very Low Density (VLD) [(2, 2.9, 4)], Low Density (LD) [(8, 8, 11)], Medium Density (MD)
[(18, 20, 24)], High Density (HD) [(50, 55, 64)] and Very High Density (VHD) [(90, 90, 110)]. For
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Figure 3: Qualitative results of SCALOR for Moving dSprites and Moving MNIST (HD) tasks: a) Inferred
bounding boxes superimposed on the original image sequence. White circles indicate discovery at that timestep,
b) Reconstructed sequence, c) Per-object reconstruction

Figure 4: Qualitative samples of tracking on Moving dSprites task with dynamic background: a) Original
image sequence with inferred bounding boxes, b) Reconstructed sequence

example, in the MD setting, there are always between 18 to 25 objects in the overall environment,
while only about 20 of them are visible on average in each frame.

Experiment 1 - Tracking Performance. This experiment evaluates the tracking performance in

an environment without background. We use the following tracking metrics: Multi-Object Track-
ing Accuracy (MOTA), precision-recall of the inferred bounding boxes (Bernardin & Stiefelhagen,
2008), reconstruction mean squared error, and normalized counting mean absolute error (Count-
MAE). CountMAE measures the difference between the number of predicted objects and the actual
number of objects, normalized by the latter. MOTA measures the tracking accuracy and consistency
of the bounding boxes. Precision-recall measures the number of false-positive and negatives, re-
gardless of the associated IDs. For computing the MOT metrics, we choose the Euclidean distance
threshold to be twice the actual object size in each setting. Figure 2 shows the quantitative results of
SCALOR compared to baselines. More detailed quantitative results are given in Appendix B.

We compare the performance of the proposed model with SQAIR in the VLD setting for both
MNIST and dSprites datasets, and LD setting for dSprites. Note that we were not able to make
SQAIR work on other settings due to the high object density. As shown in Figure 2, SCALOR
outperforms SQAIR in all these settings, obtaining signi cantly higher accuracy and recall. SQAIR
either misses some objects or misidenti es distinct objects as one. In addition, SCALOR has lower
values of CountMAE in comparison to SQAIR, showing that SCALOR can infer the number of
objects in the scene more accurately. Furthermore, we observe that increasing the number of ob-
jects in the scene does not signi cantly impede SCALOR's tracking ability, which demonstrates the
strength of SCALOR when applied to images with a high number of objects. SCALOR can achieve
relatively high precision-recall even for scenes containing about 100 objects. Note that in the VHD
case, the number of objects (about 90) in the rst time-step exceeds the number of detection grid
cells (8 8) the discovery model has. Thus, the model can only detect up to 64 objects at the rst
time-step, and detects the rest in the following time-steps. This results in lower performance on the
tracking and detection accuracy in the VHD case. This is demonstrated in Figure 10 in Appendix C.

Figure 3 demonstrates the qualitative performance of SCALOR on dSprites and MNIST (HD). To
clarify tracking consistency, bounding boxes with distinct ids are represented by distinct colors.
Discovered objects are emphasized by white circles. As shown in Figure 3(a), the discovery module
of SCALOR can identify newly introduced objects and put them in the propagation list while the
propagation module keeps tracking existing objects. Figure 3(c) shows object-wise rendering of
inferred 2" |atent variables. For clear visualization, object-wise rendering is shown only for a
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