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Abstract

Exploring the potential of GANs for unsupervised disentan-
glement learning, this paper proposes a novel GAN-based
disentanglement framework with One-Hot Sampling and Or-
thogonal Regularization (OOGAN). While previous works
mostly attempt to tackle disentanglement learning through
VAE and seek to implicitly minimize the Total Correlation
(TC) objective with various sorts of approximation meth-
ods, we show that GANs have a natural advantage in disen-
tangling with an alternating latent variable (noise) sampling
method that is straightforward and robust. Furthermore, we
provide a brand-new perspective on designing the structure of
the generator and discriminator, demonstrating that a minor
structural change and an orthogonal regularization on model
weights entails an improved disentanglement. Instead of ex-
perimenting on simple toy datasets, we conduct experiments
on higher-resolution images and show that OOGAN greatly
pushes the boundary of unsupervised disentanglement.

1 Introduction
A disentangled representation is one that separates the un-
derlying factors of variation such that each dimension ex-
clusively encodes one semantic feature (Bengio, Courville,
and Vincent 2013; Kim and Mnih 2018). While the benefits
of the learned representation for downstream tasks is ques-
tioned by Locatello et al. (2019), disentangling a Deep Neu-
ral Network (DNN) is still of great value in terms of human-
controllable data generation, data manipulation and post-
processing, and increasing the model interpretability. More-
over, disentanglement learning in an unsupervised manner
can effectively highlight the biased generative factors from
a given dataset, and yield appealing data-analytic proper-
ties. In this work, we focus on unsupervised disentangle-
ment learning using GANs (Goodfellow et al. 2014) on
images, which brings substantial advances in tasks such
as semantic image understanding and generation, and po-
tentially aids research on zero-shot learning and reinforce-
ment learning (Bengio, Courville, and Vincent 2013; Hig-
gins et al. 2017; Lample et al. 2017; Elgammal et al. 2018;
Elhoseiny et al. 2017; Zhu et al. 2018; 2019a; 2019b;
Kim et al. 2018).
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Recent popular methods to tackle the unsupervised dis-
entangling problem are based on GANs (Goodfellow et al.
2014) or VAEs (Kingma and Welling 2014), and many in-
stantiations of these (Saxe et al. 2018; Gabrié et al. 2018;
Alemi et al. 2018; Louizos, Ullrich, and Welling 2017) draw
on information-theoretical concepts (Shannon 1948). Info-
GAN (Chen et al. 2016) seeks to maximize a Mutual Infor-
mation (MI) lower bound between a sampled conditional
vector and the generated data, with the expectation that the
generator and discriminator will disentangle the vector with
respect to the true underlying factors. InfoGAN-CR (Lin et
al. 2019) introduces a contrastive regularizer focusing on
forming more desirable latent traversals. In contrast, VAE-
based approaches (Esmaeili et al. 2019) attempt to optimize
a Total Correlation (TC) (Watanabe 1960) objective im-
posed on the inferred latent vector, which achieves disentan-
glement by encouraging inter-dimensional independence in
the latent vector.

TC-based VAE models have proven fruitful in disentan-
gling. However, there is usually a trade-off between the de-
gree of achievable disentanglement and the data-generating
ability of VAE (Kim and Mnih 2018). In practice, VAE
struggles significantly when trained on higher-resolution im-
ages due to its restricted generative power. Furthermore, it
only approximates the TC. Since both the marginal distri-
bution of the learned latent representation and the product
of its marginals are intractable in VAE, optimization pro-
cess is usually implicit and complicated. In contrast, with
rapid advances (Zhang et al. 2019; Miyato et al. 2018;
Karras, Laine, and Aila 2019), GANs have become more sta-
ble to train, and their generative power has become unparal-
leled on high-resolution images. Nonetheless, less attention
has been paid to GANs in unsupervised disentanglement
learning. Accordingly, we propose OOGAN, a novel frame-
work based on GANs that can explicitly disentangle while
generating high-quality images. The framework’s compo-
nents can readily be adopted to other GAN models.

Unlike in VAEs, where a latent vector has to be inferred,
in GANs, noise is actively sampled as the latent vector dur-
ing training. We exploit this property to enable OOGAN to
directly learn a disentangled latent vector, by means of one-
hot vectors as latent representations to enforce exclusivity
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and to encourage each dimension to capture different seman-
tic features. This is achieved without sacrificing the contin-
uous nature of the latent space through an alternating sam-
pling procedure. We argue that our proposed OOGAN fully
highlights the structural advantage of GANs over VAEs for
disentanglement learning, which, to the best of our knowl-
edge, has not been exploited before.

We achieve disentanglement in OOGAN through three
contributions: 1) We propose an alternating one-hot sam-
pling procedure for GANs to encourage greater disentangle-
ment. 2) We adopt an orthogonal regularization on the model
weights to better accompany our objective. 3) We identify a
weakness in InfoGAN and related models with similar struc-
ture, which we summarize as the compete and conflict issue,
and propose a model-structural change to resolve it. More-
over, we propose a compact and intuitive metric targeting
the disentanglement of the generative part in the models. We
present both quantitative and qualitative results along with
further analysis of OOGAN, and compare its performance
against VAEs and InfoGAN.

As proposed by Locatello et al. (2018), we hereby clarify
that the main inductive bias in this paper comes from our
model design. Since we assume that there is a latent vector
that controls the attributes of the data, and the dimensions of
this vector are mutually independent. We design our model
in view of these assumptions.

2 Related Work

β-VAE-based models: In the settings of β-VAE and its vari-
ants (Higgins et al. 2017; Burgess et al. 2018; Chen et al.
2018; Kim and Mnih 2018; Esmaeili et al. 2018), a factor-
ized posterior pφ(z |x) is learned such that each dimension
of a sampled zi is able to encode a disentangled representa-
tion of data x. The fundamental objective that β-VAE tries
to maximize (also known as the Evidence Lower-Bound Op-
timization) is:

L(θ, φ;x, z, β) = Eqφ(z|x)[log pθ(x | z)]−
βDKL(qφ(z |x)||p(z)),

(1)

where β > 1 is usually selected to place stronger em-
phasis on the KL term for a better disentanglement learn-
ing. Burgess et al. (2018) motivate the effect of β from
an information-theoretical perspective, where the KL diver-
gence term can be regarded as an upper bound that forces
q(z) to carry less information, thus becoming disentangled.

Follow-up research extends the explanation by deriving
a Total Correlation from the KL term in the β-VAE objec-
tive, and highlights this TC term as the key factor to learn-
ing disentangled representations. Given a multi-dimensional
continuous vector z, the TC quantifies the redundancy and
dependency among each dimension zi. It is formally defined
as the KL divergence from the joint distribution q(z1, ..., zn)
to the independent distribution of q(z1)q(z2)...q(zn):

LTC = DKL(q(z)||q̂(z)), (2)

where q̂(z) =
∏n

i=1 q(zi). However, the TC term requires
the evaluation of the density q(z) = Ep(n)[q(z|n)], which
depends on the distribution of the entire dataset and usually

is intractable. For the sake of a better optimization on the
TC term, Lample et al. (2017) propose TC-VAE, which uses
a minibatch-weighted sampling method to approximate TC.
Kim and Mnih (2018) perform the same estimation using
an auxiliary discriminator network in their Factor-VAE. Fur-
thermore, Esmaeili et al. (2018) suggest a more generalized
objective where the marginals q(zi) can be further decom-
posed into more TC terms, in case each q(zi) learns inde-
pendent but entangled features, which leads to a hierarchi-
cally factorized VAE. Dupont (2018) leverage the Gumbel
Max trick (Jang, Gu, and Poole 2017) to enable disentan-
gled learning of discrete features for VAE.
GAN-based models: InfoGAN (Chen et al. 2016) reveals
the potential of GANs (Goodfellow et al. 2014) in the field
of unsupervised disentanglement learning. In a typical GAN
setting, a generator G and a discriminator D are trained by
playing an adversarial game formulated as:

min
G

max
D

LGAN(D,G) =

Ep(x)[log(D(x))] + Ep(z)[log(1−D(G(z))].
(3)

While this mini-max game guides G towards generating re-
alistic x from noise z drawn from the isotropic Gaussian
distribution, the variation of z often remains entangled. In-
foGAN manages to make G learn a disentangled transforma-
tion from a latent code c, which is concatenated to z before
being fed to G. InfoGAN achieves this by maximizing a Mu-
tual Information (MI) lower-bound between c and the gener-
ated sample x = G(z, c), where the MI I(c,G(z, c)) can be
calculated directly by matching c to ĉ = Q(G(z, c)), where
Q is an auxiliary network that seeks to predict the sampled
latent vector from x. In practice, Q shares most weights with
D. However, such a lower-bound constraint only ensures c
gains control over the generation process, but cannot guar-
antee any disentanglement as c increases its dimensionality,
because this lower-bound does not encourage any indepen-
dence across each dimension of c.

A more recent GAN-based disentanglement work is the
Information-Bottleneck-GAN (Jeon, Lee, and Kim 2019).
However, it fails to take advantage of the GAN structure, in-
stead trying to implicitly minimize the TC in the same way
as β-VAE. The method requires an extra network that en-
codes noise z into to a control vector c and lets the origi-
nal G and D play the decoder’s role to reconstruct z. This
severely hurts the generation quality, since G starts the gen-
eration from c, which has a much lower dimensionality than
z, and the increased network modules and loss objectives
make the training scheme tedious and less likely to find the
proper hyper-parameters that allow the model to converge.

3 Proposed Method

Our approach accomplishes both the task of disentangled
feature extraction and human-controllable data generation in
an unsupervised setting within the GAN framework. We de-
fine our problem as follows: For a continuous control vector
c sampled from uniform(0, 1), we wish our generator G to
be disentangled such that each dimension in c solely controls
one feature of the generated data x = G(c, z) (z is the noise
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Figure 1: OOGAN makes minimal changes upon a basic
GAN. c denotes the continuous control vector, z is the noise
vector, c′ is the feature representation of fake images.

vector), and our feature extractor Q (mostly the discrimina-
tor D with a few layers on top that gives vector outputs) is
able to emit a feature representation c′, given x, that is dis-
entangled in the same way as c.

Our model is illustrated in Figure 1. Similar to the design
of InfoGAN, we let the feature extractor Q be a sub-module
that shares weights with the discriminator D. Q takes the
feature map of a generated image G(c, z) as input and tries
to predict the control vector c used by the generator G. We
describe the three components of our OOGAN framework
in the following sub-sections.

Alternating Continuous and One-hot Sampling

Previous methods of minimizing TC to achieve disentangle-
ment have two limitations. First, due to the intractability, ex-
tra network modules and objectives have to be invoked to
approximate TC, which leads to undesired hyper-parameter
tuning, a non-trivial training regime, and a high computa-
tional overhead. Second, to optimize the derived TC objec-
tives in VAE-based models, the data generation quality is
sacrificed (Kim and Mnih 2018; Chen et al. 2018), and can
hardly perform well on higher-resolution image data. In con-
trast, in the GAN setting, the latent vector is sampled in-
stead of inferred as in VAEs. This motivates us to approach
disentanglement by deliberately sampling latent vectors that
possess the property of inter-dimensional independence and
training the networks using these sampled vectors.

To this end, we propose an alternating continuous-discrete
sampling procedure: we alternate between sampling contin-
uous c from uniform(0, 1) (as typically done in InfoGAN)
and sampling c as one-hot vectors. The one-hot vector c im-
plies that the generated image should only exhibit one fea-
ture, and, ideally, the prediction c′ from Q should also be
a one-hot vector. On both the G and Q sides, any presence
of other features should be penalized, while alternating with
continuous uniform sampling is necessary to ensure the con-
tinuity of the representation. Interestingly, such a one-hot
sampling resembles a classification task. Therefore, we can
jointly train Q and G directly via a cross-entropy loss. In
such a process, G is trained to generate images that possess
the specified features and avoid retaining any other features,
while Q is trained to summarize the highlighted feature only
in one dimension and refrain from spreading the feature rep-
resentation into multiple dimensions.

Note that we treat c as a continuous vector in the entire
training process, and the alternating one-hot sampling can
be seen as a regularizor for G and Q. When we sample c

from uniform(0, 1) as in InfoGAN, we ensure the correlation
between c and x remains. Furthermore, when we interleave
that with one-hot samples, the process can be interpreted as
getting the extremely typical samples (those samples that lie
on the boundary of the uniform distribution) for the model.
We argue that sampling data at the distribution boundaries
makes the model pay more attention to these boundaries,
yielding a clearer distribution shape highlighting the seman-
tics of these boundary factors. These typical samples are vi-
tal for the model to learn inter-dimension exclusivity, as a
one-hot c regularizes G to generate images with only one
factor and Q to only capture this one factor.

In other words, alternating one-hot and uniform sampling
results in a more desirable prior distribution for disentan-
gling GANs, which provides more typical samples on the
margin than a single uniform distribution. Such an alternat-
ing procedure, which injects the categorical sampling (i.e.,
the one-hot sampling) into a continuous c, makes it possible
that c gains continuous control over the generation process
while simultaneously paying more attention to those typical
examples, and therefore achieves better disentanglement.

Formally, our complete objective for OOGAN is:

min
G

max
D

LOOGAN(D,G) = LGAN(D,G)+

λI(ccontinuous, G(ccontinuous, z))+

γLCross-Entropy(Q(G(cone-hot(d), z)), cone-hot(d)).

(4)

Despite the lack of any TC terms in our objective, the one-
hot sampling still ensures that we have a well-disentangled
feature extractor Q and generator G that learn features with
no overlap between each dimension in c, without any ap-
proximations and extra network modules involved.

Compete-Free Generator

InfoGAN (Chen et al. 2016) and many conditional-GAN
variants leverage an auxiliary vector c that is concatenated
with noise z before being fed into G, with the expectation
that c carries the human-controllable information. From a
size perspective, the dimensionality of z is usually much
more significant than that of c (z typically has around a hun-
dred dimensions, while c has in the order of 10). Intuitively,
c will have much less impact in the generation process. With
the objective of unsupervised disentanglement learning, a
large portion of influence z takes in the generation process
is undesirable, which we refer to as the competing and con-
flicting issue.

Usually, a disentangled feature learned by c can also be
entangled in z. During the training process, if c with ci hold-
ing a high signal on a certain feature is paired with some z
with many dimensions holding the same feature with a con-
flicting signal, this signal, entangled in z, will easily over-
power c. Thus, the generated images will not present ci’s
signal. Such a conflict will discourage c from mastering the
learned feature and cause it to stray away to some easier-to-
achieve but less distinct features. An example is shown in
Figure 2. More discussion can be found in the experiments
section.

To avoid the aforementioned competing and conflicting
issue, we propose a new Compete-Free Design of the gen-
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Figure 2: Latent traversals trained on CelebA to showcase
the competing and conflicting issue. The images are from
the same set of (z, c) on one fixed dimension of c after dif-
ferent training iterations. We observe that InfoGAN begins
to capture what appears to be a “wearing glasses” feature at
a very early stage, but discards it during training in all di-
mensions of c. In contrast, when OOGAN begins to capture
this feature, it consistently masters it in the end.

erator’s input block, which switches the role between c and
z by letting c control the fundamental content even when the
dimensionality of c is low, and ensures that z has limited
influence in the generation process.

To start with, we project the low-dimensional control vec-
tor c into a multi-channel 4× 4 feature map by a convTrans-
posed layer. Then, we add this feature map to a learned con-
stant tensor with the same dimensionality.

The weights for the constant tensor are randomly initial-
ized before training and are trained via back-propagation
just like all other model weights. This learned constant can
be regarded as an additive bias that is learned from the
dataset, and is necessary since it is responsible for repre-
senting the features that are not captured in c. Ideally, when
given a c with all zeros as input, this constant should let the
generator output the most “neutral” x. In our experiments,
we find such constant important for a more stabilized learn-
ing process. It makes OOGAN faster to converge to the dis-
entangled factors. Intuitively, one can imagine this constant
as placing an anchor at the center of the target distribution,
such that all latent factors can expand in different directions.
This behavior encourages the model to focus on learning the
correlation between c and the generated images. Without this
constant, OOGAN will still work but will be slower to con-
verge for c.

To encourage the variance and complement the details for
a higher-quality generation, the traditional noise z is still
taken into the generator, but only after the 8× 8 feature map
level. To prevent z from causing the competing and conflict-
ing issue, we leverage an attention mask generated from c on
the features from z, which means that only the approved part
of z by c can join in the generation process. Different lay-
ers in CNNs have been studied extensively (Karras, Laine,
and Aila 2019), where the first few layers tend to generate
fundamental compositions, and higher layers only refine the
details. So our design makes c more natural to control the
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Figure 3: Model structures: (a) Input block of the compete-
free G. (b) Orthogonal-regularized grouped Q

key generative factors without the interference of z. The de-
sign details are illustrated in Figure 3-(a).

Our generator design resembles the one proposed for
StyleGAN (Karras, Laine, and Aila 2019), as we both base
the generation on a fixed multi-dimensional feature map in-
stead of an input vector z, and take z as input only in later
layers. As claimed by Karras et al., such a design leads to
a better separation in the data attributes and a more linear
interpolation along latent factors. However, both the motiva-
tion and structure details are different. The disentanglement
we study here is a more strict term than what Karras et al.
used. The fundamental difference is that the fixed weights
in our proposed model only serve as a supportive bias, and
will be directly changed by c, while in StyleGAN the fixed
weights are solely used to start the image generation process.

Orthogonal Regularized & Grouped Feature
Extractor

To learn a disentangled representation, we propose a new
structure of Q that uses grouped convolutions (Krizhevsky,
Sutskever, and Hinton 2012; Zhang et al. 2018) instead of
traditional fully connected ones, with an orthogonal regular-
ization on the weights among every convolution kernel. The
intuition is, since we hope that Q will be a highly disentan-
gled feature extractor, a fully connected (FC) design is not
favorable, since, in a FC convolution, each feature prediction
has to take into consideration all the feature maps from the
previous layer. A grouped convolution, on the other hand,
can focus its decision making on a much smaller group of
previous features, and may thus be less distracted by poten-
tially irrelevant features.

To make sure that each group is indeed attending to dif-
ferent features, we impose an additional loss function on
the weights of the convolutional layers to enforce the or-
thogonality between different kernels. Weight orthogonality
in DNNs has been studied (Brock et al. 2016; Huang et al.
2018; Bansal, Chen, and Wang 2018). However, these stud-
ies each focused on different tasks, and none of them re-
vealed the potential for disentanglement learning.

The orthogonal regularization we use is straightforward:
during each forward pass of the OOGAN, compute and min-
imize the cosine similarity between every convolutional ker-
nel. With grouped feature extraction and orthogonal regular-
ization, Q structurally more easily captures diversified fea-
tures in each dimension. Note that the group design is not
only applicable to convolutional layers but also to grouped
linear layers or other weights indicated as “transformer” in
Figure 3-(b). Similarly, the orthogonal regularization can be
applied on weights of all these grouped layers.
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4 Perceptual Diversity Metric

Quantitative metrics for the disentanglement are mostly
proposed in VAE-based works and for simulated toy
datasets with available ground truth information. Higgins et
al. (2017) suggest training a low-capacity linear classifier
on the obtained latent representations of the simulated data
from the trained encoder, and report the error rate of the clas-
sifier as the disentanglement score of the generative model.
Kim and Mnih (2018) argue that the introduction of an ex-
tra classifier could lead to undesirable uncertainties due to
the increased hyper-parameters to tune. Thus, they favor a
majority-vote classifier that can be obtained more directly.
We concur with Kim and Mnih (2018) in arguing that, to
the best of our knowledge, there is no convincing metric for
disentanglement on a dataset for which no ground truth la-
tent factors are provided. Therefore, we propose a method
that is capable of relatively evaluating partial properties of a
disentangling model when certain conditions are satisfied.

Our intuition is that if a generative model is well-
disentangled, then varying each dimension of the controlling
vector c should yield different feature changes of the gener-
ated data x. Suppose the feasible value range for c is [a, b],
and for a pair of (co, i, j) where co is a uniformly sampled
vector and i and j are two randomly selected indices, we
get ci by setting co[i] = b and co[j] = a, and cj by setting
co[j] = b and co[i] = a. Given the fact that i and j each con-
trol different factors, we expect xi = G(ci) and xj = G(cj)
to be different. Therefore, we can use a pre-trained VGG
(Simonyan and Zisserman 2014) model V to extract the fea-
ture map of xi and xj , and report their L1 distance as the
disentanglement score, with a higher L1 distance indicating
dimensions i and j are more independent. The final score of
this proposed perceptual diversity metric will be the average
score of many samples of paired (co, i, j).

We argue that such a metric can adequately reflect the
separability and diversity of the learned factors, especially
when used for comparing similarly structured models on
high-resolution datasets, where higher diversity should al-
ready be considered better, and on datasets in which latent
factors are known to control a good amount of visual differ-
ences. As shown in Figure 4, the proposed metric can effi-
ciently capture the disentangle performance in terms of how
diversified each dimension is in c.

5 Experiments

We conduct quantitative and qualitative experiments to
demonstrate the advantages of our method on several
datasets. First, we perform quantitative experiments on the
dSprites datasets (Matthey et al. 2017) following the met-
ric proposed by Kim and Mnih (2018). After that, we show
the superiority of OOGAN in generating high-quality im-
ages while maintaining competitive disentanglement com-
pared to VAE-based models on CelebA (Liu et al. 2015)
and 3D-chair (Aubry et al. 2014) data. Based on the disen-
tangling benchmark guidance from Eastwood and Williams
(2018), we also present an elaborated learned-factor identifi-
cation experiment to showcase the effectiveness of OOGAN
and validate our compete-and-conflicting issue observations.

Figure 4: Generated images for CelebA: In each group, the
left-most image is generated from a randomly sampled c,
and the following ones are generated by changing the value
of each dimension in c to 1. (a) OOGAN exhibits greater vi-
sual differences among each dimension, reflecting its ability
to learn diverse latent factors. (b) Without the proposed one-
hot sampling, OOGAN still manages to learn some distin-
guishable features, reflecting the advantage of its structural
design. (c) The 4 top right images show that the learned fea-
tures for an InfoGAN have a large overlap across the latent
dimensions in c, lacking proper disentanglement.

Figure 5: Latent traversals on dSprites

Finally, we conduct an ablation study on the proposed com-
ponents in OOGAN with our metric.
Hardware and training conditions: We perform all the
experiments on one NVIDIA RTX 2080Ti GPU, on which
all the models can be well trained within (up to) 10 hours.
All the code to reproduce our experiments is available on
GitHub, and training configurations can be found there.
Quantitative results on dSprites: Several quantitative met-
rics have been proposed on the dSprites dataset (Higgins et
al. 2017; Kim and Mnih 2018; Eastwood and Williams 2018;
Chen et al. 2018). While these metrics achieve a thorough
evaluation of the disentanglement abilities of the feature-
extractor (i.e., the encoder in VAE and Q in GANs), they pay
no attention to the generative part of the models. Therefore,
we only select Kim and Mnih’s metric for its intuitiveness
and simplicity to demonstrate our model’s competitiveness
on the feature extractor’s end.

For all the models, we follow the same setup as Kim and
Mnih (2018) and Jeon, Lee, and Kim (2019). Due to the
simplicity of the dataset, we train all the GAN models with
the “instance noise technique” introduced by Sønderby et
al. (2017) to get stable and good quality results.

As can be seen from Table 1 and Figure 5, our proposed
OOGAN genuinely does a better job on both the feature ex-
tractor and generator parts. While Factor-VAE is only able
to disentangle three out of the five ground truth factors effec-
tively, OOGAN retrieves all the generative factors and man-
ages to put the variables of the discrete factor “shape” into
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Figure 6: Latent traversals on 3D Chair

Figure 7: Latent traversals for model trained on CelebA

different dimensions. Additionally, we would like to high-
light the robustness of our model, where varying the hyper-
parameters of λ (1 to 5) and γ (0.2 to 2) in our loss function
always yields consistent performance.
Qualitative results on 3D Chairs: On the 3D Chairs data,
we use 64× 64 RGB images with batch size 64 for all train-
ing runs. To demonstrate the robustness and performance
of OOGAN in generating higher-quality images and poten-
tially learning more latent factors, we consider dimensional-
ities of c of up to 16, where previous works only experiment
on a smaller dimensionality such as 6.

In Factor-VAE, when we increase the dimensionality of c
from 6 to 16, it struggles to disentangle at a similar quality,
and the reconstruction ability is severely sacrificed. In con-
trast, our model is not affected by an increase of the dimen-
sionality, and apart from learning somewhat more obvious
features such as scale and azimuth, our model also discov-
ers several exciting features that have never been reported
in previous work. For example, Figure 6-(c) shows a lin-
ear transformation of different back styles and leg thickness
of the chairs, and Figure 6-(d) shows that our model suc-
cessfully disentangles discrete features such as “color” and
“chair type” without any additional tweaks and tricks, for
which additional tweaks such as various approximation ap-
proaches would have to be incorporated in a VAE approach.
Disentangling at a higher resolution on CelebA: We con-
sider OOGAN as a suite of three modules that can be
plugged into any GAN frameworks, and it is orthogonal
to other disentanglement approaches based on GANs such
as IBGAN. In other words, it can be incorporated into
other methods and inherits the breakthroughs made in GANs
(Zhang et al. 2019; Miyato et al. 2018; Karras, Laine, and

Table 1: Disentanglement using Kim et al.’s metric
Model Score
β-VAE 0.63 ±0.033
Factor-VAE 0.73 ±0.112
InfoGAN 0.59 ±0.078
IB-GAN 0.80 ±0.062
OOGAN 0.81 ±0.077

Table 2: Disentanglement using Perceptual Diversity metric
Model Score Cos-simil. in Q
InfoGAN 2.39 ±0.03 0.21 ± 0.01
OOGAN w/o One-hot 2.44 ±0.05 0.09 ± 0.03
OOGAN w/o Ortho-reg 2.65 ±0.05 0.21 ± 0.01
OOGAN w/o Compt-free G 2.69 ±0.03 0.09 ± 0.03
OOGAN 2.77 ±0.06 0.09 ± 0.03

Aila 2019). Therefore, we focus on demonstrating the ad-
vantages OOGAN has over VAE-based models in qualitative
experiments. The comparison with InfoGAN will be pre-
sented as quantitative results in an ablation study.

On the CelebA dataset, while previous work operates at a
resolution of 64× 64, we train all the models at a resolution
of 256×256 to showcase the advantage of OOGAN and ex-
pose a shortcoming of the VAE-based models. Figure 4-(a)
shows the images trained in a plain DCGAN manner (Rad-
ford, Metz, and Chintala 2015) and Figure 7-(a) shows the
images trained in a progressively up-scaling manner (Karras
et al. 2018), demonstrating a strong ability to disentangle
while maintaining a high image quality. On the other hand,
VAE-based models deteriorate when reconstructing high-
contrast images, and are unable to maintain the same disen-
tanglement performance as the resolution increases. Thanks
to the detail richness of the generated images, OOGAN can
discover more interesting facial features such as “chin” and
“cheek”, which no VAE-based models have achieved.
Learned attribute analysis: To provide a more transparent
breakdown on what is learned, we train 40 binary classifiers
on the 40 provided visual attributes from the CelebA dataset,
each only predicting one attribute. Then we use these clas-
sifiers to monitor the generated images across the training
iterations of InfoGAN and OOGAN.

A shown in Figure 8, there are 40 different colors of lines,
each color representing an attribute, with 16 lines per color
representing the 16 dimensions in c. In terms of sampling
c, we set one dimension’s value to 1 and sample the re-
maining dimensions from uniform(0, 1), repeating the same
operation for all dimensions. For InfoGAN, the lines with
the same color stick together and have the same tendency
to change, which means different dimensions in c are learn-
ing similar factors. In contrast, for OOGAN, we observe that
lines in the same color (same attribute) develop differently
during the iterations. Moreover, at each iteration, the lines in
the same color get different prediction scores, implying that
different dimensions in c are learning different factors.

We then average the curves of each attribute into one to
show the prediction score for each ground truth attribute in
Figure 9, which confirms the competing and conflicting is-
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Figure 8: Binary classification of each labeled attributes for
each dimension on celebA

Figure 9: Binary classification of each labeled attributes over
all dimensions on celebA

sue. If a prediction score is constantly increasing, this means
that c is improving its ability to represent the respective at-
tribute. For InfoGAN, the attribute predictions show rising
and falling fluctuations, a sign of an unstable learning pro-
cess. In contrast, OOGAN steadily increases the prediction
score for some visual attributes.
Ablation studies: Based on the plain InfoGAN setting, we
conduct ablation studies on the effectiveness of our proposed
three modules quantitatively using our proposed metric, with
InfoGAN as the baseline. The experiments are conducted
only on learning continuous factors, as InfoGAN already
performs well in disentangling categorical latent variables.

There are two types of Q we can choose from when train-
ing OOGAN or InfoGAN. A deterministic Q will try to di-
rectly output c′, which is considered as a reconstruction of c;
and a probabilistic Q will assume that each dimension of ci
is from a Gaussian and try to output the mean and standard
deviation of that distribution given different input images.
To optimize a deterministic Q, we can directly minimize the
L1 loss between predicted c′ and the input c, and to opti-
mize the probabilistic Q, we can minimize the negative log-
likelihood given the sampled c and predicted μ and σ. In
both cases, our proposed one-hot sampling trick can partici-
pate in the optimization directly, where for the probabilistic
Q, we just minimize the cross-entropy between μ and c.

When the dimensionality of c goes beyond 6, InfoGAN
fails to disentangle them, which is also confirmed in previ-
ous work (Kim and Mnih 2018; Jeon, Lee, and Kim 2019).
As shown in Figure 4, most dimensions in InfoGAN pro-
duce similar images, as many features remain entangled. In
the meantime, OOGAN has a better tendency to learn disen-
tangled representations thanks to its structural design, and a
direct objective to learn independent features driven by the
proposed alternating one-hot sampling.

For the proposed perceptual diversity metric, we fine-

Figure 10: (a)&(b): L1 losses between sampled c and pre-
dicted c′. (c) TC estimation during training

tune the VGG model on the CelebA dataset with the pro-
vided 40 facial attributes, to make it more sensitive to
the visual attributes. As shown in Table 2, the one-hot
sampling makes the most substantial contribution, while
orthogonal-regularized Q and compete-free generator also
provide significant improvements. The averaged cosine sim-
ilarity among the weights is effectively minimized with the
proposed orthogonal regularization. In Figures 10-(a) and
10-(b), we train the models with a deterministic Q that di-
rectly attempts to reconstruct c, and plot the L1 distance be-
tween the sampled c and predicted c′ (the L1 distance for
one-hot c is not used as an objective loss to train InfoGAN).
Note how InfoGAN’s L1 loss is similarly minimized when
c is uniformly sampled, but struggles to decrease when c
is one-hot, which means that the output c′ of InfoGAN is
highly correlated (there are correlated latent factors encoded
into multiple dimensions, implying poor disentanglement),
while OOGAN’s c′ is not. In Figure 10-(c), we train the
models with probabilistic Q and estimate TC following the
method from Chen et al. (2018). The TC from InfoGAN re-
mains high, while OOGAN can maintain a low TC consis-
tently, which shows the effectiveness of our method.

6 Conclusion

We propose a robust framework that disentangles even high-
resolution images with high generation quality. Our one-hot
sampling highlights the structural advantage of GANs for
easy manipulation on the input distribution that can lead to
disentangled representation learning, while the architectural
design provides a new perspective on GAN designs. Instead
of tweaking the loss functions (designing a new loss, adjust-
ing loss weights, which are highly unstable and inconsistent
across datasets), we show that sampling noise from multiple
distributions to achieve disentanglement and interpretability
is robust and straightforward. It leads to a promising new
direction of how to train GANs, opening up substantial av-
enues for future research, e.g., choosing what distribution
to sample from, allocating alternating ratios, etc. The im-
pact of this goes beyond disentangling, as future research
can also be conducted on model interpretability and human-
controllable data generation. In the future, we plan to ex-
plore more dynamic and fluent sampling methods that can be
integrated into the GAN framework for better performance,
and we will attempt to validate the benefits of these sampling
methods theoretically.
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