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Abstract

Modern recommender systems are increasingly expected to
provide informative explanations that enable users to under-
stand the reason for particular recommendations. However,
previous methods struggle to interpret the input IDs of user–
item pairs in real-world datasets, failing to extract adequate
characteristics for controllable generation. To address this
issue, we propose disentangled conditional variational au-
toencoders (CVAEs) for explainable recommendation, which
leverage disentangled latent preference factors and guide the
explanation generation with the refined condition of CVAEs
via a self-regularization contrastive learning loss. Extensive
experiments demonstrate that our method generates high-
quality explanations and achieves new state-of-the-art results
in diverse domains.

Introduction
Due to the high demand for increasing users’ trust, recom-
mender systems are often expected to provide informative
explanations to better reveal why particular items are se-
lected for recommendation (Wang et al. 2018a,b; Chen et al.
2019). Real-world explanations for recommendations can be
presented in various forms (Zhang and Chen 2020). In this
paper, we focus on post-hoc explanations that are expressed
in natural language. As depicted in Fig. 1, our task requires
a model to interpret the given user ID, item ID, and rating
score from recommender systems, and thereafter generate
appropriate textual explanations.

Figure 1: An example of explanation generation

However, most existing approaches tend to generate
generic explanations that seldom account for the particular
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traits and attributes of users and items (Cao et al. 2018).
An underlying reason is that previous models are insensi-
tive to the ID strings and typically fail to extract sufficient
evidence as generative signals from such opaque inputs (Li,
Zhang, and Chen 2021b). This problem is particularly pro-
nounced for neural network-based architectures that directly
embed input user and item IDs in a similar way as normal
words, given that such IDs occur only infrequently and are
easily regarded as out-of-vocabulary tokens. Hence, previ-
ous models struggle to capture specific features behind users
and items identified with IDs, instead delivering generic and
often identical explanations (underlined in Fig. 1) for dif-
ferent user–item pairs. It can be observed that the quality of
generated explanations from NETE (Li, Zhang, and Chen
2020) and PETER (Li, Zhang, and Chen 2021b), two pre-
vious state-of-the-art models, is far from satisfactory com-
pared with the ground-truth reference.

In fact, the key to explanation generation is to recognize
essential characteristics of user–item pairs (Ma et al. 2019).
Yet, it is non-trivial for models to acquire better represen-
tations and thereby guarantee diversity when merely con-
sidering opaque ID strings for users and items. Conven-
tional encoder–decoder approaches learn hidden represen-
tations from the inputs alone. To capture supplemental sig-
nals, several prior studies extend the encoder–decoder archi-
tecture by designing additional modules or introducing aux-
iliary tasks. For example, the NETE model relies on a neu-
ral template-based framework to incorporate feature-specific
details, however at the expense of a severely restricted diver-
sity and expressivity of the generated explanations. The PE-
TER model exploits a Transformer-based architecture with
context prediction to interpret IDs, which however entails a
heavy dependency on auxiliary tasks.

A promising choice to overcome these drawbacks and en-
sure the informativeness of generated explanations is the
use of conditional variational autoencoders (CVAEs), which
leverage sampled latent variables to capture underlying se-
mantics and further guide the learning process towards di-
verse generation with an extra condition (Sohn, Yan, and Lee
2015). Still, to align the CVAE-based architecture with our
expectations, considerable modifications are required, par-
ticularly when the user and item IDs are opaque identifiers
that are challenging to interpret. Since there is a sizeable
semantic gap between input IDs and the corresponding tex-
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tual explanations during training (Hu et al. 2021), regular
approaches of representing the condition of CVAEs are not
applicable. Additionally, prior research shows that user be-
havior data in recommender systems is driven by complex
latent preference factors that are highly entangled (Ma et al.
2019). These entangled factors characterize users’ prefer-
ences to purchasing items and cover a large range of product
attributes, each of which may correspond to different con-
cepts separately (e.g., the size or the color of a shirt). Dis-
entangling the underlying explanatory factors enables the
model to force each dimension of the representations to in-
dependently reflect an isolated factor, which we conjecture
can increase the diversity of generated explanations. How-
ever, this remains a fairly unexplored research avenue in ex-
planation generation.

In this paper, we propose a novel disentangled CVAE-
based architecture to learn better representations for explain-
able recommendation. It disentangles the latent variables to
encourage separate dimensions to reflect pertinent user pref-
erences for generation, and refines the condition signal of
the CVAE with a self-regularization loss to more precisely
interpret the inputs. Our key contributions are as follows.

• We leverage factor disentanglement to decompose the la-
tent factors behind user preferences, enabling each iso-
lated variable to capture informative and indispensable
signals for the decoder to generate better explanations.

• We propose a novel self-regularization technique to re-
fine the condition signal of CVAEs, which leverages a
word identity loss to explore discriminative representa-
tions for user–item pairs identified with uninformative
IDs, and captures essential characteristics of recommen-
dation to guide the generative process for explanations.

• Based on the disentangled latent variables and refined
condition signal, our model successfully reconstructs
the given information and generates high-quality expla-
nations, yielding state-of-the-art results on real-world
datasets with long-tail users in various domains.

Related Work
Explainable Recommendation One prominent way of
enabling explainable recommendation is to generate post-
hoc explanations, which typically are free-text explana-
tions (Tintarev 2007). In this setting, most prior work can be
categorized as based either on templates (Zhang et al. 2014)
or on neural natural language generation. However, several
typical instances of the latter, e.g., NRT (Li et al. 2017) and
Att2Seq (Dong et al. 2017), frequently produce generic and
insufficiently diverse explanations (Zhang and Chen 2020).
To address this problem, the subsequent model NETE com-
bines template-based and neural generation methods (Li,
Zhang, and Chen 2020). Nevertheless, the expressivity of
generated explanations still remains far from satisfactory,
since the simple combination only causes the model to fit the
given samples instead of crafting new sentences (Li, Zhang,
and Chen 2021a). The recent PETER model (Li, Zhang, and
Chen 2021b) achieves strong results, but at the expense of
relying heavily on the auxiliary task of context prediction.

Conditional Variational Autoencoders Conditional vari-
ational autoencoders (CVAEs) introduce a latent variable to
capture the underlying semantics behind the data, and can
further guide the target textual generation with an extra con-
dition signal (Sohn, Yan, and Lee 2015). Previous studies
have adopted CVAEs to improve the generation diversity for
a range of different tasks, such as dialogue generation (Song
et al. 2019). However, our post-hoc explanation generation
requires the system to interpret special input ID strings that
refer to particular users and items, which is a notable dif-
ference compared with other generation tasks. Hence, it is
insufficient to leverage vanilla encoder–decoder approaches
to extract characteristics for user–item pairs, because these
models merely generate explanations with the hidden rep-
resentations learnt from the inputs alone. A CVAE-based ar-
chitecture is a promising choice (Cai et al. 2022) to learn bet-
ter representations for user–item pairs based on uninforma-
tive IDs, because CVAEs can utilize sampled latent variables
to increase the generation diversity and control the learning
process via an extra condition signal. Still, to align CVAEs
with our expectations, considerable architectural modifica-
tions are required that will be explained in the following.

Disentangled Representation Learning Learning disen-
tangled representations that uncover the underlying factors
has shown to improve the robustness and controllability
of variational autoencoders (VAEs) (Bengio, Courville, and
Vincent 2013; Dittadi et al. 2021). Since user behavior data
are driven by highly entangled latent preference factors, we
design a specific disentanglement technique to uncover the
underlying factors for explainable recommendation. As each
dimension of the disentangled representations is encouraged
to independently reflect an isolated factor (Ma et al. 2019),
this also guarantees an explainable generative process.

Contrastive Representation Learning Contrastive learn-
ing (He et al. 2020) brings distinguishable representations to
boost the performance of models in various tasks. Previous
work incorporates this technique into a VAE-based frame-
work to extract salient features for better generation (Aneja
et al. 2021). In contrast, our approach aims to learn better
representations to refine the condition signal of a CVAE,
which prior work seldom considers. Note that we do not use
the conventional contrastive loss, but rather a custom form.

Proposed Model
Since it is non-trivial to interpret user–item IDs for informa-
tive explanation generation, we propose a novel disentangled
CVAE-based architecture to learn pertinent characteristics
of users and items. As illustrated in Fig. 2, the variational
neural encoder first leverages both prior and recognition
networks to deal with ID–rating signals and explanations,
respectively. Subsequently, we draw on factor disentangle-
ment to decompose the latent variables that are conditioned
on the input IDs, and exploit self-regularization to refine the
condition signal of CVAEs. Finally, our variational decoder
accomplishes the reconstruction using these enhanced sig-
nals to generate informative explanations.
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Figure 2: Overview of the Proposed Model.

Explanation Generation Formulation
We assume that the explanation generation process, i.e.,
pd,T,Ω(x|y), is guided by a latent variable z together with
the input y, where y refers to the given IDs and rating, and
x is the explanation. Hence, we use the following equations
to formulate this process.

pd,T,Ω(x|y) =
∫
z

pd(x|z, y) pT,Ω(z|y)dz, (1)

pd(x|z, y) = δ(d(z, y)− x), (2)

pT,Ω(z|y) =
∏
i

t(z(i))g(y(i)) exp[T (z(i))⊤Ω(y(i))]. (3)

Here, we use pT,Ω(z|y) to represent the prior network and
pd(x|z, y) as the response decoder. Eq. (2) defines our
reconstruction network with a Dirac distribution, where
d(z, y) is an approximate injective function. Eq. (3) defines
an exponential conditionally factorial distribution (Bishop
2006) used in our prior network, where t(·) is the base mea-
sure, g(·) obtains the normalizing constant, T (·) refers to
sufficient statistics, Ω(·) obtains parameters, and z(i) repre-
sents the i-th disentangled latent variable.

Transformation Module
For representation transformation, we define a transforma-
tion component TB that employs spectral normalization to
improve the robustness of the model for input disturbance in
the recognition network, prior network, and reconstruction
network. Let fdx,dy

(x) = SN(Wdy×dx
GELU(x) + bdy

),
where dx and dy are the input and output dimensions of this
function, SN(·) is spectral normalization, GELU(·) is an ac-
tivation function, Wdy×dx ∈ Rdy×dx , and bdy ∈ Rdy . Let

TBd1,d2,d3(x) = fd1,d3(LayerNorm(Td1,d2(x) + x)) (4)
Td1,d2

(x) = fd1,d2
◦ fd2,d2

◦ fd2,d1
◦ fd1,d1

(x). (5)

Note that a TBd1,d2,d3
(·) component comprises five train-

able transformation functions, where x is the input. d1, d2,
and d3 are the input, intermediate, and output dimensions of
TB, respectively. Td1,d2(·) is a composite module that con-
sists of four different fdx,dy (·) functions, where ◦ denotes
composition. The output of TB is split into equal-sized par-
titions if the output is assigned to more than one variable.

Encoder
Recognition Network To encode all tokens in the expla-
nation x into compact hidden states, we first employ a Trans-
former (Vaswani et al. 2017) that takes the first output to-
ken C as the corresponding representation. Subsequently,
we leverage a recognition network shown in Fig. 3 to model
the posterior qθ(z|x, y), where θ denotes the parameters.

Figure 3: Illustration of the Recognition Network. Here, the
first nd-layer TB only generates the hidden states h, and the
subsequent ns-layer TB generates h, µ and σ.

As depicted in Fig. 3, the recognition network consists of
nd+ns TB with an initial input h0

r = {C, eu, ei, er}, where
eu, ei, and er are the embeddings of the given user ID, item
ID, and rating. These embeddings are randomly initialized
with respective embedding lookup tables. First, we feed h0

r
to the first nd-layer TB for encoding, obtaining:

hl
r = TBl

r(h
l−1
r ), (6)
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where l ∈ {1, 2, · · · , nd} refers to the l-th TB layer, and
hnd
r is the output of this nd-layer TB. We feed hnd

r to the
subsequent ns-layer TB to generate three key parameters:

µzj
r
, logσzj

r
, hj

r = TBj
r(h

j−1
r ), (7)

where j ∈ {nd + 1, nd + 2, · · · , nd + ns} represents the
j-th TB layer, and we consider µzj

r
and σzj

r
as the mean

and variance of the probability distribution q(zj
r |x, y), re-

spectively. Therefore, we formulate the distribution of la-
tent variables as q(zj

r |x, y) ∼ N (µzj
r
, diag(σzjr

)), where
diag(·) is a function that transforms a vector to a diagonal
matrix with the same dimensions. We use the reparametriza-
tion trick (Kingma and Welling 2014) to sample a latent vari-
able zj

r . In addition, hj
r in Eq. 7 is the output of the ns-layer

TB. The recognition network outputs hnd+ns
r , which corre-

sponds to rich semantic representations depicted in Fig. 2.

Prior Network The prior network encodes the input y,
comprising a user ID, item ID, and rating, which employs
the same TB based structure as shown in Fig. 2 to model
pT,Ω(z|y) and contributes to the generation of the CVAE
condition signal. As previously mentioned, eu, ei, and er
represent the embeddings of the user ID, item ID, and rat-
ing. We first concatenate all these embeddings to obtain
hp
0 = [eu, ei, er], and then feed hp

0 to the nd-layer TB
for further encoding. Finally, we employ the subsequent ns-
layer TB to generate three key parameters:

µzj
p
, logσzj

p
, hj

p = TBj
p(h

j−1
p ). (8)

Here, j ∈ {nd+1, · · · , nd+ns} refers to the j-th TB layer.
µzj

p
and σzj

p
are the mean and the variance of the probabil-

ity distribution pT,Ω(z
j
p|y), respectively. The output of prior

network hnd+ns
p corresponds to the CVAE condition.

To achieve factor disentanglement, we extend Eq. (3) as

pT,Ω(z|y) =
∏
i

t(z(i)r )g(h(i)
p ) exp[T (z(i)r )⊤Ω(h(i)

p )], (9)

g(h(i)
p ) =

1√
2π

, t(z(i)r ) =
1

σ
z
(i)
p

, (10)

T (z(i)r ) = (z̄(i)r − µzp)
2, Ω(h(i)

p ) =
1

2σ2

z
(i)
p

(11)

Here, z̄(i)r denotes dynamic statistics that can be calculated
as z̄

(i)
r = (1 − ϵ)z̄

(i)
r + ϵz

(i′)
r , where z

(i)
r means the i-th

factor of latent variable zr, and z
(i′)
r is sampled from the

distribution based on the previous instance.
Finally, we incorporate the following KL-divergence to

regularize the representation of latent variables:

Ldis = KL(qθ(z|x, y) ∥ pT,Ω(z|y)). (12)

For inference, the prior network replaces the recognition
network to generate latent variables as shown in Fig. 2(b).

Condition Signal Self-regularization (CSS)
Our CSS technique employs self-regularization to improve
the representation of the CVAE condition. Since the expla-
nation encoded by the recognition network can be viewed

as a rich semantic representation of the corresponding rec-
ommendation, we can regard the recognition network as a
source of supervision to provide a useful training signal to
improve the condition signal representation. However, there
is no guarantee that such a representation will contain mean-
ingful information, despite being generated by the corre-
sponding explanation. Hence, we propose unordered tar-
get word prediction to encourage the recognition network
to generate more informative representations. Simultane-
ously, we align the condition signal with the distribution
of words predicted by the recognition network, which has
been shown to be a more effective method of improving the
representation compared with traditional cosine similarity
based loss (Liang et al. 2021). We represent the unordered
words in the target explanation as xbow, i.e., a form of bag-
of-words loss (Harris 1970). Let fp = MLPp(h

nd+ns
p ),

fr = MLPr(h
nd+ns
r ). We then define:

log p(xbow|hnd+ns
p ) = log

|xbow|∏
n=1

exp (fp[n])∑V
m=1 exp(fp[m])

log p(xbow|hnd+ns
r ) = log

|xbow|∏
n=1

exp(fr[n])∑V
m=1 exp (fr[m])

.

(13)
where n represents the n-th word in an explanation, m is the
m-th word in the vocabulary, and V is the vocabulary size.

The objective of CSS can be formulated as follows:

LCSS = γ1 log p(xbow|hnd+ns
p ) + γ2 log p(xbow|hnd+ns

r )

+ γ3KL(p(xbow|hnd+ns
r ) ∥ p(xbow|hnd+ns

r )).
(14)

Here, γ1,γ2, and γ3 are the weights of different terms. The
first two terms of Eq. (14) assess the identity of words to en-
courage hnd+ns

p and hnd+ns
r to contain information in the

target explanation and thus improve their representations.
The third term can further improve the representation of
hnd+ns
p , since it provides additional regularization.

Decoder
Reconstruction Network. The reconstruction network
combines disentangled latent variables and the condition
signal to generate natural language explanations. Fig. 4 pro-
vides an illustration of the reconstruction network.

Figure 4: Illustration of the Reconstruction Network.

As depicted, we first use the condition signal hnd+ns
p as

the initial hidden state h0
g , and then conduct a two-stage de-

coding. Specifically, in the first stage, we add the sampled
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latent variables to the hidden states, and deal with the cor-
responding outcome with the first ns-layer TB of the recon-
struction network as:

hj
g = TBj

g(h
j−1
g + znd+ns−j+1), (15)

where j ∈ {1, . . . , ns} and znd+ns−j+1 is sampled from the
distribution q(znd+ns−j+1

r |x, y) during training. Note that
znd+ns−j+1 serves as the mean of q(znd+ns−j+1

p |y) during
testing. For the second stage, we employ the subsequent nd-
layer TB to further decode the hidden states as

hc
g = TBc

g(h
c−1
g ), (16)

where c ∈ {ns+1, . . . , ns+nd} indicates the c-th TB layer.
Finally, the output of reconstruction network hns+nd

g is
fed into a GPT decoder (Floridi and Chiriatti 2020) as an ini-
tial token to reconstruct the explanations. We regard the con-
ventional negative log-likelihood Lrec as an objective term.

Training Objective
As for training, we use a reconstruction loss Lrec to optimize
the decoder for explanation generation, a disentanglement
loss Ldis to decompose latent variables, and our CSS loss
LCSS to refine the condition of CVAEs. Thus, the overall
training objective L can be defined as

L = Lrec +

nd+ns∑
j=nd+1

αLj
disβLCSS, (17)

where α and β are pre-defined hyperparameters, and Lj
dis

comes from the j-th TB layer of the prior network.

Experimental Setup
Dataset. We use three large-scale datasets including
Yelp1, Amazon 5-core Movie & TV2 and TripAdvisor3, and
follow the common practice (Li, Zhang, and Chen 2020) to
extract valid explanations and conduct pre-processing.

Metrics. We leverage several standard metrics to con-
duct the evaluation, including BLEU-1, BLEU-4, ROUGE-
1, ROUGE-L, and METEOR. Specifically, we use the
BLEU (Papineni et al. 2002) scores with 1-gram and
4-grams, respectively. ROUGE-1 refers to the ROUGE
score (Lin 2004) measured with 1-grams. ROUGE-L finds
the longest common subsequence and takes the sentence-
level structural similarity into account. METEOR (Banerjee
and Lavie 2005) accounts for synonyms in sentences, lead-
ing to a better correlation with human evaluations.

Experimental settings. We set the hidden size of our 2-
layer Transformer encoder and decoder to be 768, and ns,
nd to be 3 for TB. After every TB transformation, the in-
put variable is compressed to half of the original size in
encoding or expanded to be twice as large in reconstruc-
tion. The size of the fixed vocabulary is 20,000, and the

1www.yelp.com/dataset
2www.jmcauley.uscd.edu/data/amazon
3www.tripadvisor.com

batch size is 512. The hyper-parameters β and γ are con-
sistently set to 1.0 and 0.8, respectively. For training, we use
AdamW (Kingma and Ba 2015) with an initial learning rate
2 × 10−5, and decrease the learning rate by a factor of 0.8
when the decrease ratio of the validation loss is smaller than
2%. We run our model five times to report average results.

Main Results
Generic Evaluation We conduct extensive experiments
on three datasets for comparison with competitive baselines,
including Att2Seq, NETE (Li, Zhang, and Chen 2020), and
PETER (Li, Zhang, and Chen 2021b).4 Table 1 provides
a comparison of results on explanation generation. Overall,
we achieve strong results across all three datasets, demon-
strating the effectiveness of our CVAE in learning sufficient
features from the input IDs. Most notably, our model ob-
tains significant improvements compared to state-of-the-art
PETER, which incorporates additional context prediction.

Explainability Evaluation For further analysis, we assess
the quality of generated explanations with several newly-
adopted metrics (Wen et al. 2022), including Relevance, Po-
larity, Subjectivity, and Grammar Correctness. For Rel-
evance, we invoke Sentence-BERT 5 to obtain embeddings,
and compute the cosine similarity between generated expla-
nations and gold standard references. Polarity reflects the
confidence levels of whether explanations are positive or
negative, and Subjectivity considers the subjectivity of gen-
erated explanations. For Polarity and Subjectivity, we use
TextBlob6 to calculate the mean squared error of measured
values. In addition, we use the average number of grammati-
cal errors in generated explanations to assess Grammar Cor-
rectness using a grammar checker7. All explainability results
are provided in Table 2. Overall, we achieve new state-of-
the-art results in terms of Relevance, Polarity, and Subjec-
tivity. The high Relevance scores suggest that our model can
generate high-quality explanations that correspond well with
the ground truth, while a more subjective explanation, for
instance, may consist of personal opinions or judgements,
which implies that our model can better capture user prefer-
ences and thereby generate more personalized explanations.

Quantitative Analysis
Ablation Study
To better quantify the contributions of different components,
we conduct ablation studies with three simplified architec-
tures. The first simplification Ours-w/o FDis omits Fac-
tor Disentanglement from our model. Ours-w/o CSS re-
moves the loss in our CSS self-regularization, while Ours-
w/o FDis&CSS refers to our backbone model without fac-
tor disentanglement or CSS. Table 3 provides the results of
these ablations on Yelp. We observe that all aforementioned

4Approaches that require extra data or additional training are
omitted to keep comparisons fair.

5https://www.sbert.net/docs/pretrained models.html
6https://textblob.readthedocs.io/en/dev/
7https://pypi.org/project/language-tool-python/
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Model BLEU ROUGE-1 ROUGE-L METEOR
BLEU-1 BLEU-4 P R F1 P R F1 METEOR

Yelp
Att2Seq 11.80(±0.3) 0.82(±0.02) 14.72 11.41 12.86(±0.4) 11.03 9.36 10.13(±0.4) 4.86(±0.1)
NETE 13.93(±0.4) 1.12(±0.02) 18.33 14.57 16.23(±0.7) 13.46 12.13 12.76(±0.5) 6.43(±0.2)

PETER 16.93(±0.5) 1.24(±0.03) 20.74 16.71 18.51(±0.8) 15.82 14.21 14.97(±0.6) 6.68(±0.2)
Ours 20.11(±0.8) 1.50(±0.03) 20.99 17.91 18.73(±0.9) 16.35 14.51 16.91(±0.6) 6.95(±0.2)

Imp (%) 18.78 20.97 1.21 7.18 1.89 3.35 2.11 12.96 4.04
Amazon

Att2Seq 10.33(±0.2) 0.72(±0.02) 12.88 9.99 11.25(±0.4) 9.65 8.20 8.86(±0.4) 4.26(±0.1)
NETE 14.57(±0.4) 1.11(±0.03) 18.24 13.35 15.42(±0.9) 13.43 10.57 13.15(±0.6) 6.13(±0.1)

PETER 16.94(±0.4) 1.21(±0.05) 19.60 14.88 16.92(±1.1) 14.32 12.15 13.15(±0.6) 6.13(±0.2)
Ours 18.51(±0.9) 1.42(±0.07) 19.73 15.42 17.31(±1.3) 15.21 12.99 14.01(±0.7) 6.51(±0.2)

Imp (%) 9.27 17.36 0.66 3.63 2.30 6.21 6.91 6.54 6.20
TripAdvisor

Att2Seq 13.05(±0.2) 0.90(±0.02) 16.27 12.62 14.21(±0.7) 12.19 10.35 11.20(±0.8) 5.38(±0.2)
NETE 17.52(±0.5) 1.36(±0.03) 21.63 17.57 19.39(±1.0) 16.67 14.28 15.39(±0.9) 7.31(±0.2)

PETER 19.24(±0.8) 1.36(±0.05) 23.51 19.69 21.43(±1.2) 18.45 15.51 16.85(±1.1) 8.03(±0.3)
Ours 22.76(±1.4) 1.59(±0.08) 25.04 20.13 22.28(±1.6) 20.47 16.36 18.19(±1.3) 8.75(±0.3)

Imp (%) 18.30 16.91 6.51 2.23 3.97 10.95 5.48 7.95 8.97

Table 1: Generic Explanation generation evaluation, where Imp (improvements) are computed as relative gains compared with
the previous strong baseline model PETER.

Rel. Pol. Sub. G.C.
Att2Seq 0.2073 0.7867 0.7653 -0.7512
NETE 0.2673 0.7928 0.8025 -0.7581

PETER 0.2764 0.7968 0.8258 -0.7607
Ours 0.3221 0.8094 0.8660 -0.7633

Table 2: Explainability evaluation on Yelp. “Rel.”, “Pol.”,
“Sub.”, “G.C.” are Relevance, Polarity, Subjectivity, Gram-
mar Correctness. Higher scores indicate better results.

model components consistently yield noticeable improve-
ments. The removal of factor disentanglement causes an ob-
vious performance degradation, showing that our model suc-
ceeds at disentangling latent variables behind user prefer-
ences to explore key characteristics. Likewise, the removal
of CSS causes a severe degradation, demonstrating the ef-
fectiveness of our CSS in enabling CVAEs to enhance the
condition signal for better explanation reconstruction.

In-Depth Analysis
We further reveal the causes of gains with two strategies.

Condition Signal Self-regularization (CSS). We use
Uniformity and Alignment (Wang and Isola 2020) as met-
rics to evaluate the representation quality, aiming to assess
whether CSS refines the condition signal of CVAEs. Unifor-
mity reflects to what extent the embeddings of the condition
are uniformly distributed, and Alignment measures the sim-

ilarity of condition signals that contain the same essential
information. For evaluation, we normalize hp

nd+ns
and em-

ploy Principal Components Analysis to reduce the dimen-
sionality to 2 for visualization on Yelp. Fig. 5 (a) shows that
our model maintains a more uniform embedding space com-
pared to the variant without CSS, confirming the effective-
ness of CSS in improving uniformity. In Fig. 5 (b), the two

Figure 5: Uniformity (a) and Alignment (b) of the condition
signals of CVAEs. (a) depicts the distributions of condition
embeddings with KDE density estimation and angles calcu-
lated using the arctan2 function. (b) shows the distribution of
L2 distances between two embeddings in the positive pair.

embeddings from the same positive pairs are closer to each
other, which implies that CSS results in a better alignment
for the refined condition of CVAEs. In general, greater uni-
formity indicates that more information is preserved in con-
dition signals, and a high alignment score suggests a higher
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BLEU-1 BLEU-4 ROUGE-1 ROUGE-L METEOR
Ours 20.11 1.50 16.91 14.51 6.95

-w/o FDis 19.37 (↓3.68%) 1.41 (↓6.00%) 16.52 (↓2.31 %) 13.91 (↓4.14%) 6.76 (↓2.73%)
-w/o CSS 18.25 (↓9.25%) 1.27 (↓15.33%) 15.53(↓9.46%) 13.01 (↓10.34%) 6.29 (↓9.50%)

-w/o FDis&CSS 17.88 (↓11.09%) 1.24 (↓17.33%) 15.13 (↓10.53%) 12.52 (↓13.71%) 5.92 (↓14.68%)

Table 3: Ablation Study on Yelp. Relative drops are computed in comparison with Ours.

similarity between the embeddings of condition signals from
an input recommendation pair and its corresponding expla-
nations. Thus, we conclude that our model with CSS brings
better refined condition signals for explanation generation.

Factor Disentanglement To assess the degree of factor
disentanglement, we employ Mutual Information to evalu-
ate the disentanglement between different groups of latent
variables. We adopt avgMI to measure their relevance as

MI(x, y) =
∑
xi

∑
yj

[p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
], (18)

where xi and yi refer to the values in the i-th dimension of x
and y, respectively. We select the groups of latent variables
from the bottom layer of the model, and plot the mutual in-
formation values between them in the matrix given in Fig. 6.
An optimal matrix will have a value of 1 along its diago-
nal and 0 elsewhere. Fig. 6 shows that our model is effec-

Figure 6: AvgMI matrix for factor disentanglement on Yelp,
where z refers to latent variables.

tive at reducing the Mutual Information between different
groups of latent variables. Compared with the variant with-
out factor disentanglement (Ours-w/o FDis), we conclude
that the proposed disentanglement regularization greatly re-
duces the dependency between different groups of latent
variables, whereas applying a vanilla KL regularization to-
wards a prior is less useful.

Comparison with Model Variants
For further analysis, we evaluate additional variants that
replace our CSS with different kinds of regularization
losses, including SimCSE and the vanilla contrastive learn-
ing (VCL) loss. In Fig. 7, we observe that our model obtains
significantly better results, confirming the superiority of our
CSS over other prominent contrastive learning approaches.
We also devise a variant that replaces our factor disentan-
glement with the well-known hierarchical disentanglement
of Chen et al. (2018). Our model using factor disentangle-
ment outperforms this variant with relative improvements of

Figure 7: Explanation generation performance of model
variants with different choices of contrastive loss.

3.5%, 3.4%, 0.8%, 1.6%, and 5.9% on BLEU-1, BLEU-4,
ROUGE-1, ROUGE-L, and METEOR, respectively.

Case Study
To intuitively show the improvements of our model, we
present a randomly sampled explanation from Yelp in Table
4. Our model provides more specific characteristics (italic)
compared with all baselines, thereby generating more con-
crete and informative explanations to avoid generic sen-
tences. Moreover, as for the example in Fig. 1, our model
can deliver a more informative explanation “The staff is very
friendly and helpful, and customer service is impressive”.

Reference
The atmosphere is relaxing and enjoyable
and the food especially sandwiches are
good.

NETE The environment is clear.

PETER The staff is very friendly and the facility is
clean and well maintained.

Ours They offer extremely great sandwiches
and it is a great spot to go for relaxing.

Table 4: Explanations generated by different models.

Conclusion
We present a disentangled CVAE-based model that gener-
ates natural language explanations for recommender sys-
tems. Most notably, it leverages a novel disentangling mech-
anism to extract essential characteristics pertinent to ex-
planation generation. Specifically, we disentangle latent
variables and refine the CVAE condition using a self-
regularization loss for better reconstruction. Extensive ex-
periments demonstrate the effectiveness of our model and
confirm that it can generate high-quality explanations.
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