





Table 5: Experimental results on semantic (left) and syntactic sentence analogy (right)

Representation 3CosAdd-U | 3CosAdd | 3CosMul-U | 3CosMul || Representation 3CosAdd-U | 3CosAdd | 3CosMul-U | 3CosMul
GloVe 0.4159 0.7453 0.4159 0.7244 GloVe 0.4019 0.8993 0.4019 0.8908
DCT (k=1) 0.4300 0.8477 0.4300 0.8019 DCT (k=0) 0.5276 0.9298 0.5276 0.9305
SkipThought 0.2024 0.4382 0.2024 0.3563 SkipThought 0.1565 0.8295 0.1565 0.5608
QuickThought 0.0367 0.3974 0.0367 0.3129 QuickThought 0.2397 0.8882 0.2397 0.8945
InferSentV1 0.2655 0.6159 0.2655 0.5502 InferSentV1 0.2983 0.8547 0.2983 0.8222
InferSentV2 0.3755 0.7967 0.3755 0.5490 InferSentV2 0.2883 0.8853 0.2883 0.4271
GenSen 0.2374 0.3457 0.2374 0.2617 GenSen 0.5815 0.8212 0.5815 0.8645
USE-DAN 0.0317 0.1471 0.0317 0.0598 USE-DAN 0.0315 0.8847 0.0315 0.0724
USE-Transformer 0.0606 0.2773 0.0606 0.0831 USE-Transformer 0.0423 0.8930 0.0423 0.0804
BERT-Base-AVG 0.1128 0.4481 0.1128 0.4358 BERT-Base-AVG 0.1984 0.8647 0.1984 0.8665
BERT-Large-AVG 0.2131 0.4852 0.2131 0.4344 BERT-Large-AVG 0.2641 0.8602 0.2641 0.7402
XLNet-Base-AVG 0.0239 0.1521 0.0239 0.1510 XLNet-Base-AVG 0.0228 0.7177 0.0228 0.7171
XLNet-Large-AVG 0.0062 0.0327 0.0062 0.0318 XLNet-Large-AVG 0.0152 0.4660 0.0152 0.4642
RoBERTa-Base-CLS 0.0609 0.4171 0.0609 0.4162 RoBERTa-Base-AVG 0.2155 0.8531 0.2155 0.8524
RoBERTa-Large-CLS 0.0267 0.4507 0.0267 0.4496 RoBERTa-Large-AVG | 0.1161 0.8442 0.1161 0.8433
SBERT-Base-AVG 0.0640 0.4190 0.0640 0.1473 SBERT-Base-AVG 0.1348 0.6119 0.1348 0.2205
SBERT-Large-AVG 0.1143 0.4898 0.1143 0.3656 SBERT-Large-AVG 0.1921 0.5842 0.1921 0.3448
SRoBERTa-Base-AVG | 0.0135 0.0347 0.0135 0.0248 SRoBERTa-Base-AVG | 0.1703 0.4970 0.1703 0.2792
SRoBERTa-Large-AVG | 0.0190 0.0886 0.0190 0.0587 SRoBERTa-Large-AVG | 0.2046 0.5281 0.2046 0.3572

Figure 1: Error Analysis of Pre-trained Sentence Embeddings on Relation Based Analogy using 3CosAdd
(top) and 3CosMul (bottom)

Another interesting finding is that BERT-based models improve their performance on distinguishing the
actual premise from the negated version of the hypothesis after fine-tuning on the SNLI dataset. Yet, they
have a higher probability of being misled by adversarial candidates created by Span Deletion and Word
Reordering.

Figure 2 shows the accuracy of pre-trained sentence embeddings broken down by particular sentence
relation-based analogy forms. We observe that the difficulty of some relation-based analogy tasks is
substantially higher than for others. Most of the models, except for XI.Net-Large and GloVe, achieve
relatively high accuracy on Entailment analogy, while none of the models perform well on the proposed
Objective Clause analogy. In addition, Transformer-driven models have made great progress at capturing
syntactic analogies such as Passivization, Objective Clauses, and Predicative Adjective Conversion, but
their ability to identify the Negation relation appears limited in this sort of evaluation. We also find
that the performance of the pre-trained models on relational analogy tasks might be affected by the
network architecture. For example, sentence embedding models built on RNNs fare better at recognizing
Entailment and Negation analogy, but their performance on distinguishing Passivization and Objective



Figure 2: Accuracy of Pre-trained Sentence Embeddings on each Relation Based Analogy using 3CosAdd
(top) and 3CosMul (bottom)
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5 Conclusion

This paper presents several new datasets to test to what extent existing sentence embedding models
exhibit regularities with regard to sentence analogies. Most of the sentence embedding models we tested
succeeded in recognizing syntactic analogies based on lexical ones, but had a harder time capturing
semantic regularities by means of an analogy task. Moreover, the remarkable success of BERT-style
contextual embeddings does not always translate into better regularities in the vector space of fixed-length
sentence embeddings. More training data and model parameters as well do not necessarily yield better
results. In many cases, word vector averages or a Discrete Cosine Transform of word embeddings
outperform more complex sentence embedding models. Resources related to this study are available
online at http://sentence.embeddings.org.
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