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Abstract—Locomotion in physical space is one of the most
natural forms of interaction in applications such as virtual
reality systems. Although there are many algorithms to track
walking people, existing methods mostly fail to cope with
occluded bodies in the setting of multi-person tracking with
one camera. This paper proposes a method to overcome this
challenge by fusing skeletal with shadow data, both of which
are captured by a single RGB-D camera. Skeletal tracking
provides the positions of people that can be captured directly,
while their shadows are used to track them when they are no
longer visible. Our experiments confirm that this method can
efficiently handle full occlusions. It thus has substantial value
in resolving the occlusion problem in multi-person tracking,
even with other kinds of cameras.

Keywords-Multi-person tracking; RGB-D camera; shadow;
occlusion

I. INTRODUCTION

In immersive virtual environments, locomotion through

the virtual space is among the most crucial forms of in-

teraction. The primary manifestation of human locomotion

is walking, and, hence, genuine walking has substantial

advantages over both virtual walking and flying as a mode of

locomotion, in terms of its simplicity, straightforwardness,

and naturalness [1]. Thus, it is not surprising that real

walking in the physical space, which can engender greater

degrees of flow experience and preference with respect to

non-moving modes [2], has emerged as one of the most

natural and effective interaction methods in virtual reality

systems [3].

There are many algorithms seeking to track genuinely

walking people, and visual tracking is a popular form with

a long history [4]. Recently, RGB-D cameras such as Mi-

crosoft’s Kinect, which is based on vision techniques, have

enabled many applications. They constitute a non-intrusive

and appealing tracking technology due to their low cost and

ease of deployment [5]. Unfortunately, one often faces the

challenge of occlusion in multi-person tracking with a single

front-view camera [6].

In recent years, many methods have sought to address

this, including methods based on multiple cameras [7],

Kinect setups relying on the ceiling [8], and approaches that

fuse Kinect signals with other sensors [9]. However, these

approaches may not be suitable in all settings, given issues

such as their high cost or inconvenient deployment setup

for users. They also do not solve the problem of occlusion

during a long period of interaction or the problem of full-

body occlusion.

In this paper, we assess to what extent shadows can serve

as clues in tracking human movement. This is motivated by

the fact that the shadow of a person moves in sync with

a person’s body. Wang and Yagi also showed that shadows

were helpful in pedestrian detection [10]. A person’s shadow

exists in either indoor or outdoor conditions in most cases. In

cases where such shadows are lacking, we can easily bring

about shadows by adding a low-cost light source.

We propose a multi-person tracking algorithm fusing

shadow signals in the RGB image with skeleton data, both

of which are captured solely by a single RGB-D camera

without any reliance on other sensors. Our experiments

and sample application results show that our algorithm can

resolve even long-duration and full-body occlusions using

a single Kinect. This in turn helps to improve the tracking

capability of the Kinect.

II. RELATED WORK

Body occlusion is an important yet insufficiently well

resolved problem in multi-person tracking. In this section,

we mainly introduce related work with regard to tracking

algorithms based on RGB-D cameras.

In recent years, the arrival of cheap RGB-D devices (such

as Microsoft’s Kinect) has facilitated the development of

many new approaches to multiple person tracking. These

sensors can provide color information as well as the esti-

mated depth for each pixel [11]. RGB image and depth data

are often used jointly as cues to resolve partial occlusion

[12].However, occlusion, especially full occlusion, is still a

significant problem in real deployments of single, front-view

camera systems.
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Multiple cameras can be deployed to resolve full occlu-

sions while tracking people [13]. However, installing more

cameras has a number of downsides, such as higher costs,

difficulty in calibration, and an inconvenient deployment

setup for users.

To address this problem, recent work has focused on the

single perspective occlusion problem. An optimal camera

placement scheme can aid in avoiding the full occlusion

problem [8]. However, in settings with a high ceiling or

without any ceiling, mounting a camera to obtain a bird’s eye

view is either unfeasible or inconvenient. Another approach

to cope with occlusion under a single perspective is to rely

on prediction methods based on motion trajectories, such as

particle filters [14]. However, long-duration occlusion from

a single camera cause a loss of observation information,

and these methods may fail to track the occluded person

in the presence of long-duration or full occlusions. Further

research has proposed methods to fuse Kinect data with

other sensor data [9], [15]. None of the aforementioned

methods fully address the long-duration and full occlusion

problems adequately.

In this paper, we focus on human tracking solutions that

have low cost and are easy to deploy, relying on just a single

Kinect without any other sensors. In our tracking algorithm,

the shadow of a person serves as a clue. Our approach

efficiently tracks human movement by fusing shadow in-

formation in the RGB image with skeleton data, both of

which are captured solely by a single Kinect, which can

resolve occlusion issues even under long-duration or full-

body occlusions.

III. SHADOW-BASED TRACKING ALGORITHM (STA)

In this section, we shall introduce the occlusion cases

we can deal with, explore the basic idea and principle, and

provide the details of our algorithm.

A. Central Idea and Principle

As a popular RGB-D camera, Kinect devices can provide

color, depth, and predicted skeleton data. The Kinect SDK

provides data in three spaces: the color image space, depth

image space, and skeleton space. In many applications, it

has been shown that skeleton data can be reliably used

to track people. Kinect V2 can predict the skeleton data

of up to 6 persons simultaneously. However, with a single

Kinect, the skeleton of a person is lost when that person

is occluded by others. Although RGB image and depth

data of the Kinect can be used together as clues to resolve

partial occlusions, these methods cannot handle complete

body occlusions particularly well. In Fig. 1, person Hb is

occluded by person Hf . In this case, the Kinect fails to

detect the skeleton of Hb.

In such cases, we can rely on shadows, which are present

in both indoor and outdoor settings and can also be expressly

created by adding a light source, as a simple and low-cost

Figure 1. An example of an occlusion event.

solution. Since the shadow of a person always moves in

conjunction with that person’s body, it can easily be captured

from the RGB image of the Kinect, and thus it is possible

to evaluate the position of the occluded person by analyzing

their shadow.

Fig. 2 show the tracking trajectories of one person com-

puted by her skeleton (blue line) and shadow (red line),

wherein the person walks at different speeds along different

directions in the coordinate system of the Kinect. The results

show that the position of the person computed by her shadow

is close to that computed by her skeleton. Thus, we can rely

on shadows as a clue to assist capturing a person’s position

when their skeleton is lost, while relying on the skeleton data

to compute the position of a person when their skeleton is

available.

(a) (b)

Figure 2. The tracking trajectories of one person computed by her skeleton
(blue line) and shadow (red line), respectively, while she walks in arbitrary
directions in the coordinate system of the Kinect, (a) at various speeds, and
(b) at a constant speed.

Hence, the key idea of our algorithm is as follows: If the

skeleton data can be obtained by the Kinect, we use it to

track people; otherwise, i.e., in the case that the skeleton data

of a person is not available, we make use of their shadow in

the RGB image captured by the Kinect to assess the person’s

position.

When relying on the shadow of a person to evaluate their

location, it is necessary to segment the shadow in the RGB

image and compute the position in the skeleton space. This

involves a conversion between the image space and skeleton

space. In particular, Fig. 1 shows the RGB image, in which

Hb is occluded by Hf . Fig. 3 shows the skeleton space,
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where o is the center of the Kinect infrared camera. G is

the plane corresponding to the ground, parallel to the xoz
plane. Here, o1 is the projection point of o on the ground

plane G, and pf as well as pb represent the positions of the

feet of Hf and Hb, respectively. Here, pf , pb, o1 are on

G. Since Hb is occluded by Hf , the points o1, pf , pb are

on the same line. In this case, Hb is occluded by Hf , but

the shadow of Hb is visible for the RGB camera. In Fig. 3,

the shadow of Hb is represented by st. Therefore, we can

compute the intersection point of o1pf and st on the plane

G, which can be seen as pb to represent the position of Hb.

Figure 3. The skeleton space of Kinect and the transformation relationship
between RGB image space and skeleton space.

Additionally, to quickly and efficiently extract the shadow

of the occluded person, we need to locate the region in which

the occluded person’s shadow can be found. In this paper,

we assume that the light source and Kinect are placed such

that the shadow of each person is always on the left (or

right) side of their body from the perspective of the Kinect

during the tracking process. We let a = 0 or 1 designate the

left or right side, respectively.
As shown in Fig. 4(a), the lines l and r divide the RGB

image into three parts Rl, Rm, and Rr, where Rl and Rr

are on the left and right side of Hf , respectively. Rr has no

shadow, Rl only has shadows of Hf and Hb, and the bodies

and small parts of shadows of Hf and Hb are in the region

Rm. Hence, the region Rl only has shadows of Hf and Hb

after subtracting the background image (cf. Fig. 4(b)). In

this case, it is easier to extract shadows from Rl than from

the entire RGB image.
During the tracking process, if the shadow of Hb appears

in Rl (when a = 0), then it will always exist in Rl. Here, Rl

changes along with changes of the position of Hf in each

frame (the method to compute these will be introduced in

Section IV). Hence, we extract shadows from Rl. Similarly,

if the shadow of Hb appears in Rr (when a = 1), then it

will always exist in Rr. Here, Rr changes along with any

change in position of Hf in each frame. Hence, we extract

shadows from Rr.

B. Algorithm Overview
In our method, when there is no loss of tracking, we

detect the human body and obtain its skeletal model using

(a) (b)

Figure 4. The region in which the occluded person’s shadows are located.
(a) The RGB image is divided into three regions and (b) the difference
image is obtained by subtracting the background image from Rl. It includes
the occluded person’s shadow.

the standard approach [16]. The skeleton is used to compute

the person’s position. Otherwise, the shadow is used to track

a person whose skeleton is lost in the tracking process.

In the initialization stage, the algorithm first captures the

background image. For each person, once they are inside the

depth-perceiving area of the Kinect, we begin to obtain their

position using their skeleton data. Additionally, to quickly

and efficiently extract the shadow of the occluded person, we

need to determine the region in which the occluded person’s

shadow is located, and set the value of a.

During the running stage, we obtain their position using

a person’s skeleton data for each frame. If the skeleton

of a person exists, we compute their position. Otherwise,

we invoke a Shadow-based Tracking Algorithm (STA) to

evaluate their positions.

In the following, we give an overview of our STA algo-

rithm.

Algorithm 1 Shadow-based Tracking Algorithm
Require: A background image, current color image, and the

skeleton data of Hf .

Ensure: The position of the occluded person Hb.

1: Find the region R including the shadow in the current

color image according to the value of a that we com-

puted in the initialization stage, based on the background

image and the skeleton data of Hf ;

2: Extract Hb’s shadow in R;

3: Compute the position of Hb based on the shadow;

4: return The position of Hb

IV. ALGORITHM IMPLEMENTATION

A. Search Region Identification and Shadow Extraction

In the following, we consider how to find the region R
and extract the shadow in accordance with the value of a
computed in the initialization stage.

We first obtain the head joint point of Hf based on their

skeleton data and transform it into the RGB image space,

marked as hf (cf. Fig. 4(a)).
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If a = 0, then we consider the line l, which is a

perpendicular line across the point (hf .x − dx/2, 0). The

left region R of l will be used to extract the shadow of Hb.

Otherwise, we consider the line r, which is a perpendicular

line across the point (hf .x + dx/2, 0). The right region R
of r will be used to extract the shadow of Hb. Here, dx is

evaluated according to the maximum width of the bodies of

Hf and Hb in the initialization stage.

Subsequently, we obtain the difference image C by sub-

tracting the background image B from R:

For each pixel R(x, y) ∈ R, C(x, y) = |R(x, y) −
B(x, y)|. If C(x, y) > T , then C(x, y) is considered

as belonging to the shadows of Hf or Hb, and we set

C(x, y) = 1; otherwise, we set C(x, y)=0.

B. Compute the Position of Occluded People via Shadows

Next, we consider how to compute the position of the

occluded person. This entails computing the intersection

point of o1pf and st on the plane G (cf. Fig. 3).

First, we scan R from left to right. For each scan line,

we access the pixel in C from top to bottom (cf. Fig. 5(a)).

When we encounter the first pixels with value 1, we record

this, stop the scan, and initiate the next scan. All such pixels

together constitute the upper contour of Hb. Here, S is used

to represent the set of points on the upper contour of Hb.

Then, we use least squares method to fit this contour of Hb

to a line (the blue line in Fig. 5(b)), and map it onto the

plane G, which is st. Finally, we set the position of Hb as

the intersection point of st and o1pf .

(a) (b)

Figure 5. The result of fitting the upper contour of Hb to a line.

V. EXPERIMENTAL RESULTS

A. Experiment Design

For our experiments, we rely on a setup with one main

Kinect k1, and a secondary one k2 for evaluation purposes.

In the tracking process, Hf is always visible from k1, while

for Hb, the device may experience tracking loss. The Kinect

k2 is used to record the position of Hb. Moreover, Hb is

always visible from k2, and the trajectories obtained by k2
are used as reference values to test our method.

We design two experiments to assess the system. In

the first experiment, we specifically evaluate the tracking

accuracy when tracking is inhibited due to bodily occlusion.

In the second experiment, we evaluate the tracking accuracy

when the human participant moves freely, whereby the

skeleton may on occasion be tracked successfully, and on

occasion may fail to be tracked.

Experiment 1: The first experiment is designed to assess

the accuracy of our method when person Hb is occluded.

In the experiment, the person is free to walk around, such

that x and z values may change. In order to better verify

the accuracy of the algorithm, we considered three different

runs along different paths:

Path 1: When the points o1, pf and pb are approximately

collinear, and the line o1pf is parallel to the z-axis, Hb

moves back and forth along the z direction, as in Fig. 3.

We analyze the tracking accuracy with regard to the z value

when Hb is in full and long-duration occlusion.

Path 2: When a full-body occlusion occurs, Hf and Hb

move back and forth along the x direction simultaneously.

We analyze the tracking accuracy of Hb with regard to the

x value.

Path 3: When the points o1, pf and pb are approximately

collinear and the line o1pf is not parallel to the z-axis, Hb

moves back and forth along the line o1pf . We analyze the

tracking accuracy of Hb.

We assess each of these paths 10 times, relying on a pool

of 5 human participants to assume the roles of Hb and Hf .

Experiment 2: In the first experiments, the user’s motion

path was designed in advance. In the second experiment,

the participant Hb is instructed to move freely within the

space. We verify the effectiveness of our method in various

scenarios that may occur during person tracking, including

non-occlusion and occlusion.

B. Results

(a) (b)

(c) (d)

Figure 6. Comparison between trajectories as tracked by a person’s
skeleton as opposed to computed using shadows for Path 1, where Users
1, 2, 3, and 4 are randomly selected human participants, and their tracking
results correspond to (a), (b), (c), (d), respectively.
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1) Tracking Plots: In Experiment 1, there are three dif-

ferent motion paths. The comparison between the position

obtained via Hb’s skeleton and the position computed via

our shadow-based algorithm for Path 1 is given in Fig. 6.

Here, Hb moves back and forth along the z direction. The

result show that there is only a minor deviation between

the trajectories as tracked by the participant’s skeleton and

computed by our method when the person is in long-term

occlusion and full-body occlusion.

(a) (b)

(c) (d)

Figure 7. Comparison between trajectories as tracked by a person’s
skeleton as opposed to computed using shadows for Path 2, where Users
1, 2, 3, and 4 are randomly selected human participants, and their tracking
results correspond to (a), (b), (c), (d), respectively.

(a) (b)

(c) (d)

Figure 8. Comparison between trajectories as tracked by a person’s
skeleton as opposed to computed using shadows for Path 3, where Users
1, 2, 3, and 4 are randomly selected human participants, and their tracking
results correspond to (a), (b), (c), (d), respectively.

Similarly, Fig. 7 provides parts of the tracking results

for Path 2, recording x values of the occluded person Hb,

and Fig. 8 shows the obtained changes in both the x and z
directions.

Overall, the results suggest that our algorithm effectively

computes the position of people, even when they are com-

pletely occluded or occluded for a long time, regardless of

whether their position changes along a single axis or along

both axes. Moreover, our algorithm is able to compute a

person’s position effectively regardless of whether they are

stationary, in motion, or in either of the two state transitions.

This shows that our algorithm is robust in coping with a

variety of occlusions.

Figure 9. Comparison between trajectories as tracked by a person’s
skeleton and via their shadow when Hb moves in the tracking area.

In Experiment 2, we compared the tracking results as

obtained for the user’s skeleton data against the shadow-

based tracking results of our algorithm when a person moves

freely in the tracking area. As shown in Fig. 9, when a person

is in different tracking states, the trajectory obtained by our

algorithm is very close to the actual trajectory of that person,

which shows the effectiveness of our algorithm.
2) Accuracy: We computed the deviation between the

result of our method and the trajectory of the occluded

person Hb obtained from k2 as follows:
Errti =

∑NF

t=1 err
t
i/NF , errti =

√
(pti − qti)

2

Here, Errti refers to the error value of the trajectory of Hb

at time t, NF refers to the duration of the entire tracking

run, pti and qti respectively refer to the trajectory of Hb at

time t computed by our method and captured by Kinect k2.
Based on this, in order to evaluate the effectiveness of our

method, we compute the accuracy as: acci = e−Errti .
Hence, one obtains accuracy values in the range [0, 1] such

that the smaller the error value, the higher the accuracy.
First, we computed the tracking deviation of participants

along the x and z axes. The tracking deviation along the x
axis and the z axis are respectively in the range [0.14, 0.21]
and [0.1, 0.21]. Subsequently, we measured the tracking

accuracy, and its mean value is 0.8, which demonstrates that

shadows can indeed be used to track the positions of people

when their skeletons are lost.
3) Time Cost: Note that the algorithm is evaluated on

a 2.8GHz Intel Core i5 computer. The average time cost
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is 67ms for each frame, which is equivalent to about 15

frames per second (fps). This indicates that our proposed

method is a feasible choice for real-time applications on

modest hardware.

VI. CONCLUSION

Occlusion has been a persistent problem for multi-person

tracking with a single view camera. Although a variety of

tracking algorithms have been proposed, they do not effec-

tively and efficiently solve the challenges presented by long-

duration and full-body occlusion. In this paper, we explore

the novel idea of relying on shadows as additional cues in

tracking body movement, rather than merely treating such

shadows as noise. Our proposed algorithm fuses shadow and

skeletal data to track two persons using just a single Kinect

device. Our experiments demonstrate that one can improve

the tracking capabilities for people in motion with a single

Kinect, without needing to resort to the use of additional

sensor devices.
The present study constitutes an initial exploration to-

wards fully resolving long-duration occlusion and full-body

occlusion problems. In terms of limitations, the success of

this method hinges on an accurate shadow detection, which

implies that if the shadow is overly light, it will likely

not be captured accurately. Fortunately, in some cases, this

problem can be addressed by adjusting the lighting so as

to obtain darker shadows. Currently, we only consider the

case of a single shadow of a person for a given light source.

In settings involving more than one shadow of a person,

our method would need to adopt a more elaborate shadow

tracking mechanism.
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