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Abstract. The deluge of images on the Web has led to a number
of efforts to organize images semantically and mine visual knowl-
edge. Despite enormous progress on categorizing entire images or
bounding boxes, only few studies have targeted fine-grained image
understanding at the level of specific shape contours. For instance,
beyond recognizing that an image portrays a cat, we may wish to
distinguish its legs, head, tail, and so on. To this end, we present
ShapeLearner, a system that acquires such visual knowledge about
object shapes and their parts in a semantic taxonomy, and then is
able to exploit this hierarchy in order to analyze new kinds of ob-
jects that it has not observed before. ShapeLearner jointly learns this
knowledge from sets of segmented images. The space of label and
segmentation hypotheses is pruned and then evaluated using Integer
Linear Programming. Experiments on a variety of shape classes show
the accuracy and effectiveness of our method.

1 Introduction

Motivation. Over the last decade, we have observed an explosion in
the number of images uploaded online. Sharing platforms like Flickr
have long been driving forces in turning previously undistributed
digital images into an abundant resource with billions of images
online. This vast amount of data holds great potential to revolutionize
the way computers organize and understand images. Deng et al. [9]
introduced ImageNet, a hierarchical organization of images, enabling
major advances in object recognition, to the point of current deep
convolutional neural networks being able to outperform humans in
certain respects [27].

Still, current object recognition systems mostly operate at the
coarse-grained level of entire images or of rectangular bounding
boxes, while segmentation algorithms tend to consider abstract dis-
tinctions (e.g., foreground/background).

In this work, we consider the next level of image understanding and
knowledge mining, aiming at a more fine-grained understanding of
images by automatically identifying specific shape contours and the
parts of objects that they portray. One of the major challenges for this
is that there is only limited relevant training data. While it is possible
to collect millions of images with social media tags [34] and it is
feasible to obtain bounding boxes via crowdsourcing [19], obtaining
training data with fine-grained hierarchical image information is much
more challenging. Analysis of objects with respect to their parts draws
from cognitive research of the human vision systems. Shapes of parts
play an important role in the lower stages of object recognition [23].
Given a relatively small object part, humans can recognize the object
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when the part is sufficiently unique [4, 3]. Unlike deep convolutional
neural networks, humans appear to be able to acquire new categories
from very few training examples.

Thus, fine-grained image understanding has remained an open
problem in AI, as it requires considerable background knowledge
about the objects. Progress on this challenging task has the potential
to benefit numerous applications in AI, e.g. in robotics and for self-
driving cars to interpret their environment, or in photography and
graphics for selective image manipulation (removing or replacing a
part of an object).
Contribution. We introduce ShapeLearner3, a system that learns
the shapes of families of objects, together with their parts and their
geometric realization, making the following contributions.

1. ShapeLearner requires only a small number of manually annotated
seed shapes for bootstrapping and then progressively learns from
new images. It achieves this by jointly performing shape classifi-
cation, segmentation, and annotation to transfer information from
seen to unseen images.

2. ShapeLearner can automatically analyse entirely new kinds of
shapes, relying on its inference mechanism based on soft con-
straints.

3. Rather than learning mere enumerations, the system acquires
hierarchical knowledge about the objects and their parts (Fig-
ures 1c and d). This hierarchical organization is critical for jointly
analysing families of objects.

2 Related Work

Image Knowledge Harvesting. In recent years, several new meth-
ods have appeared to organize the growing amount of images on the
Web [10]. The most prominent of these is ImageNet [9], a hierar-
chically organized image knowledge base intended to serve as the
visual counterpart to WordNet [11]. While ImageNet merely provides
image-level labels, subsequent research attempted to localize indi-
vidual objects within those images using bounding boxes [13]. The
SUN Attribute dataset [24] provides coarse-grained crowd-sourced
attributes of scenes (e.g. man-made, enclosed). LabelMe [28] crowd-
sourced large amounts of polygon labels, but the system does not
support any transfer learning. Moreover, the labels can be arbitrary
words and thus require significant cleaning and organization. Our
work differs from previous work by learning specific shape contours
and subparts of objects and then being able to transfer this knowledge
to new images and even new types of objects.

Other types of data have been organized as well. For videos, hier-
archical taxonomies have been used to train classifiers [32]. For 3D

3 http://irc.cs.sdu.edu.cn/ShapeLearner/
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Figure 1: The proliferation of images on the Web (a) enables us to extract shapes to train ShapeLearner (b), a 2D shape learning system that
acquires knowledge of shape families, geometrical instances of their inner parts and their inter-relations. Given an unknown shape (c), the
system automatically determines a classification, segmentation, and hierarchical part annotation (d).

shapes, ShapeNet [5] and 3DNet [37] organize 3D (CAD) models
following WordNet.

Stock graph based shape matching approaches [31] also build a
hierarchy, but do not segment the shape into semantically meaningful
parts. The goal is to model a complex shape using a hierarchical tree
according to geometric features of the shape, which can then be used
to compare the similarity of two different shapes. In our method, we
use the more recent inner-distance method [20] to model the shape
context for shape matching.

Segmentations and Semantic Relationships. Zhang et al. [40] ob-
serve that semantic relations of parts be shared among objects in a
class and learn a set of classifiers for verb-object relationships within
a class. Similarly, graph structures have been introduced for represent-
ing semantic relations of parts acquired from sets of images [22, 6, 39].
These methods focus on processing general images and scenes, while
we believe to be the first to focus on the inner parts and geometries of
individual shape classes.

Grammar-like descriptors for visual words and visual phrases may
be defined to enhance image processing and recognition [38]. Re-
cently, Chen et al. [7] presented a method for harvesting large amounts
object relationships from images based on their probabilistic struc-
tural patterns and geometric characteristics. While their analysis is at
the level of object relationships, our method focuses on a fine-grained
sub-part analysis. Multiple instances of objects and parts within a
class provide important contextual information that can be utilized for
joint learning and segmentation [1, 35, 18]. Huang et al. [17] recently
presented a data-driven approach for simultaneous segmentation and
annotation of free-hand sketches. Although this problem is quite dif-
ferent, we compare our algorithm with theirs later in Section 5.

Deep convolutional neural networks [36, 14] can be trained to pro-
duce segmentations, but they do not address our task setting, as they
depend on the existence of very large numbers of training examples
per label. Related work in this area [16, 36, 14] assumes a standard
supervised setting: given a large training dataset for a given class,
these methods learn new segmentations. Thus, existing approaches
have been limited to very small numbers of object classes, often even
just a single one such as human bodies. ShapeLearner, in contrast,
is aimed at learning new part segmentations for many classes, given
much more limited supervision and relying on knowledge transfer
from related classes.

3 Overview and Knowledge Model

High-Level Perspective. ShapeLearner constructs a relational hier-
archy that indexes 2D shapes by utilizing taxonomic knowledge of
object shape classes and their inner parts. Our goal is to progressively
acquire such knowledge by transferring information about indexed
shapes onto new ones.

We bootstrap the system by providing labeled seed images in sev-
eral categories (e.g., mammals, fowl, home appliances). This involves
segmenting images collected via Google Images to separate the ob-
jects from their environment. Objects are then manually segmented
further into meaningful parts and labeled following the WordNet tax-
onomy. ShapeLearner captures this information about parts and their
relations in a tree-like hierarchy by connecting parts to their siblings
and ancestors. This can be viewed as a knowledge base with isA,
isPartOf, and hasShape relationships.

ShapeLearner includes a knowledge transfer algorithm for under-
standing unknown shapes. It accounts for both shape geometry and
high-level semantic relations from its previously acquired knowledge
to infer the correct classification and segmentation of the new object
shape. This is illustrated in Figure 2: Given an unknown shape, we
compute a raw set of segmentation candidates considering merely the
shape’s geometry. We determine additional candidates by matching
with geometrically similar shapes and transferring their segmentation.
This yields a set of segmentation hypotheses about the unknown shape.
ShapeLearner then transfers its knowledge onto the shape by relying
on an inference step to remove false hypotheses and select a valid
segmentation that complies with the shape’s hierarchical taxonomy.
Finally, ShapeLearner transfers this knowledge back by indexing the
new shape and progressively updating its store of visual knowledge.

In the final part of the paper, we highlight some applications based
on ShapeLearner. We describe the ShapeExplorer system, which sup-
ports image retrieval based on partial shape queries and shape morph-
ing, among other things. We also describe our system for keyword-
based image retrieval with special support for attributes.
ShapeLearner’s Knowledge. ShapeLearner is directly linked to
the WordNet [11] taxonomy, which provides a semantic orga-
nization of classes. Focusing on a subset of this taxonomy, we
adopt its isA class hierarchy and additionally harvest knowledge
for isPartOf and hasShape facts (e.g. isPartOf(leg,
human), hasShape(baseball, round)). Thus, Shape-
Learner acquires knowledge of an object’s shape, its parts, and
shapes of the parts (see Figure 3).
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Figure 2: Workflow diagram. Given an unknown 2D shape (a), ShapeLearner first determines segmentation candidates by leveraging cut and
shape matching information (b). The system uses its acquired knowledge to label candidates (c). Finally, it makes use of reasoning to prune false
hypotheses and infer a classification and semantic segmentation of the shape (d).

Figure 3: A snapshot of the knowledge in ShapeLearner’s hierarchy, zooming in on mammals and fowl. We show also a subset of the relational
facts isA, isPartOf, and hasShape.

We begin by defining the four basic concepts that ShapeLearner
relies on:

• Shapes S = {s0, s1, ..., snS} define the contour of independent
2D objects in an image.

• Classes C = {c0, c1, ..., cnC} define a category (e.g., species) of
objects in the data repository.

• Parts P = {p0, p1, ..., pnP } define a decomposition of a shape
into meaningful components.

• Labels L = {l0, l1, ..., lnL} define the textual annotations for each
part.

Initially, a seed set of parts is manually preprocessed
and transferred into ShapeLearner. In this step, the user
manually annotates parts in shapes with labels from Word-
Net (e.g., head, tail, etc.) as well as semantic relations
such as hasShape(elephant,elephantShape),
isA(elephant,mammal), and
isPartOf(tail,elephant). ShapeLearner stores this
information in a hierarchical structure (see Figure 3).

Next, we use ShapeLearner to statistically infer the following
knowledge based on available evidence:

• Part number: the number of parts per class may be fixed or
bounded (e.g., a horse has 2 front legs, an elephant has 1 trunk).

• Part distinctiveness: Shape classes may have discriminate parts
defined by the frequency of a part in all classes (e.g., the elephant
class has trunks as a distinct part within the class of mammals).

Part distinctiveness is at the core of shape classification and disam-
biguation. The part distinctiveness score for a part p in class c ∈ C
is calculated as the inverse fraction of classes containing this part:
|C|

|p∈c| ≥ ε, where ε refers to the threshold for acknowledging a part
as distinctive. In our experiments, we use ε = |C|, which means
that the part occurs in just a single class.

4 Shape Analysis

Classification and semantic segmentation of an unknown object shape
typically pose a chicken-egg problem: we may require information
about one in order to solve the other. Given an unknown 2D shape,
ShapeLearner jointly solves for both classification and semantic seg-
mentation by relying on an inference procedure to reason from its
knowledge in accordance with statistical constraints and the shape
geometry. In fact, it jointly optimizes classification, segmentation, as
well as part annotation. We next provide the technical details of this
process.

4.1 Shape Segmentation Hypotheses

Given an unknown shape of an object, we compute a set of possible
part candidates specified by different cuts in the shape (see cuts in
Figure 5(c)). Initially, we compute cuts accounting merely for the
shape geometry, applying the short-cut rule of [21], which is moti-
vated by the human vision system. This method yields somewhat
consistent cuts tracking the geometric features of the shape contour.
Nevertheless, our algorithm does not require an exact segmentation
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into meaningful parts but only a loose approximation. A somewhat
reasonable segmentation is sufficient at this step.

Next, ShapeLearner transfers additional segment hypotheses from
its existing knowledge to further enrich the candidate set. Shape
matching plays an important role in adding new cuts that further
enrich segmentation and compensate when the short-cut geometry-
based method is insufficient. For instance, in Figure 5(a), the smooth
elephant head could not be segmented by the short-cut method.

To accomplish this, ShapeLearner finds the best matching shapes
in its existing collection and transfers their segmentation onto the
input shape. Shape matching is performed using the inner-distance
similarity metric [20]. We found this method suitable as it is compu-
tationally efficient, rotation-invariant, and robust with respect to other
state-of-the-art 2D contour matching techniques (e.g., [2]).

Following the inner distance metric [20], we define C(π(A,B))
as the matching cost value for two shapes A and B. In a nutshell,
given two shapes A and B, described by their contour point sequences
p1, p2...pn and q1, q2, ...qm, respectively, we define the cost value
c(pi, qj) as the χ2 statistic assessing the similarity of the correspond-
ing point histograms. We compute the optimal matching between
A and B, denoted as π : (pi, qπ(i)), using dynamic programming.
According to the inner distance approach [20], the mapping from
shape A to B should minimize the cost. This is based on dynamic
programming to solve the sequence matching problem. We define the
minimum cost value by C(π) =

∑n
i=1 c(i, π(i)) and the number of

matching points is M(π) =
∑n

i=1 δ(i), where δ(i) = 1 if π(i) �= 0,
and 0 if π(i) = 0.

Next, we define a cut, i.e. cutA(pi, pj), as the 2D line connect-
ing contour points pi,pj in shape A. Thus, to transfer cutA(pi, pj)
from shape A in ShapeLearner onto the input shape B, we sim-
ply use the computed shape matching π and transfer cutA(pi, pj)
to cutB(qπ(i), qπ(j)) (Figure 5).

Figure 4: Cut con-
straints remove all dot
dashed cuts (l1, l4, l5).

To reduce noise in the segmentation
candidates, ShapeLearner considers only
the top k1 = 5 best matching shapes in
its collection. Additionally, it relies on
the following constraints to remove noisy
cuts (Figure 4):

• Cuts should be located in the interior
of the shape.

• When cuts intersect each other, only
the one corresponding to the longest
contour is kept.

• If two cuts are too close together,
specifically ‖cutB(d)− cutB(e)‖2 ≤
ε, where ε = 0.01 × |shape points|,
they are merged together.

4.2 Shape-Class and Part-Label Hypotheses

At this point, ShapeLearner has an unknown shape and a set of un-
labeled segments, so the shape may belong to different classes and
a cut may have different labels. Thus, ShapeLearner next annotates
segments with possible label hypotheses from its knowledge and com-
putes a valid segmentation that conforms to its acquired knowledge,
by cleaning false segments and label hypotheses.

We assign a unique ID for each cut in the shape and denote an
hypothesis as the pair label(cut,label)[.]. Additionally, we
define class hypotheses as class(shape,class)[.]. A hypoth-
esis may become a fact label(cut,label)[1] or be evalu-
ated as false, i.e. label(cut,label)[0], following an inference

process (e.g., label(cut@9, nose)[1], class(shape@1,
elephant)[0]).

Note that each cut corresponds to a part, so label(cut@9,
nose)[1] equals label(part@9, nose)[1]. Actually, each
cut produces two parts (e.g., body and leg), but here we only consider
the leg part. ShapeLearner matches the input shape against its knowl-
edge and selects the top k = 5 best matching shapes using the inner
distance metric. This yields multiple class and label assignments for
the hypotheses.

We define the cut confidence weight with respect to the top k
resulting set as follows. Given a cut cj , label li, and hypotheses:
label(cut@j, li)[.], the confidence weight of cut cj with label
li is calculated as wcj ,li = α× p1 + (1− α)× p2, (α = 0.6 in our
experiments), based on two factors:

• p1: the confidence of assigning label li to cut cj is hl
k

, where hl is
the frequency of label li in the top k result set.

• p2: A cut may match to more than one similar class. If a cut
has many possible label hypotheses (say l1, li, . . . , lm), the
confidence for each part is defined by the part shape matching
w′

cj ,li
= Mli(π)/Cli(π). Then p2 =

w′cj,li∑
l w′cj,l

.

Similarly, we define the class confidence weight with respect to the
top k result set as follows. Given the unknown part-shape sj , class ci
and hypothesis class(shape@j, ci)[.], the confidence of class
ci with respect to the top k result set is calculated as wsj ,ci = hc

k
,

where hc is the number of hits for class ci.

4.3 Shape Inference

ShapeLearner jointly solves for a consistent classification and labeling
by pruning noisy hypotheses and searching for the optimum class
and label assignment with respect to its knowledge constraints. We
formulate this problem as an Integer Linear Programming (ILP) that
considers both cut labels and shape classes to yield a consistent set of
truth value hypotheses.

We formulate the ILP variables as follows:

• xp,l ∈ {0, 1} denotes label(part, label) hypothesis l ∈
L for part p ∈ P .

• ys,c ∈ {0, 1} denotes class(shape, class) hypothesis c ∈
C for shape s ∈ S.

For each shape s, the objective function maximizes the overall con-
fidence of hypotheses (where wxp,l and wys,c are the confidence
weights for cut and class hypotheses respectively, wxp,l = wxc,l in
the previous step):

max
∑

p∈P,l∈L
wxp,l xp,l +

∑

c∈C
wys,c ys,c

subject to the following constraints derived statistically from the
knowledge collection.

Class Constraints.

• A shape s can be assigned to one class at most:
∑

c∈C
ys,c ≤ 1

• Part-distinctiveness-1: A shape class assignment should conform
to its distinctive parts (if any). Denoting (l, c) ∈ DP as the pair set
(distinctive part, class), then:

∀p ∈ P ∧ c ∈ C ∧ (l, c) ∈ DP, xp,l − ys,c ≤ 0
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Figure 5: Semantic segmentation of an elephant. Given an unsegmented shape, cuts are computed from the geometry (a), as well as transferred
from similar shapes (b). This yields multiple class hypotheses (c) which are pruned, yielding a correct semantic segmentation and annotation of
the shape (d).

• Part-distinctiveness-2: A shape class should not consist of parts
that do not belong to the class (according to isPartOf).

∀p ∈ P ∧ c ∈ C ∧ (l, c) /∈ isPartOf(p, c), xp,l + ys,c ≤ 1

Label Constraints.

• Part-inclusion should conform to ShapeLearner’s part hierarchy.
Denoting HP as the set of inclusion part pairs (i.e., (l, l′) ∈ HP

if and only if l′ includes l and isPartOf(p, p′)), and using ⊂ for
“included by”, we require

∀p, p′ ∈ P, l, l′ ∈ L ∧ (l, l′) ∈ HP ∧ p �⊂ p′, xp,l + xp′,l′ ≤ 1,

∀p, p′ ∈ P, l, l′ ∈ L ∧ (l, l′) /∈ HP ∧ p ⊂ p′, xp,l + xp′,l′ ≤ 1.

• Part-number: The number of parts in a shape class should con-
form to the class. Denoting the number of parts as nP, we add the
constraint that ∑

p∈P
xp,l ≤ nPc, l.

Note that we require the number of parts to be less than or equal
to nP due to possible occlusions of the shape in the image (cf. the
back leg in Figure 5).

After this inference step, the accepted clean facts (i.e., those
of the form label(part, label)[1] or class(shape,
class)[1]) are integrated into ShapeLearner’s knowledge
base. The shape of each part is added as hasShape(part,
part-shape). Given a shape of a new class not yet in Shape-
Learner, parts of the new class are identified via knowledge transfer. If
the new class name is X, new facts are added as isPartOf(part,
X) and hasShape(part, part-shape).

5 Results

We now present a thorough set of experiments to evaluate Shape-
Learner.

Dataset. To compile a dataset for seeding and evaluating Shape-
Learner, we collected images from Google Images, Flickr, as well
as public domain data used by Ren et al. [25]. We manually collect
and sort these images, removing noise, frontal views, and heavily
occluded shapes. We then segment the shape from its background
with the aid of the open-source tool GrabCut [26]. This segmentation
does not need to be precise. Instead, we account for the multiplicity
of parts instances to average out the results and remove outliers. The
ground truth data was labeled by 3 people. We only keep cuts or draw
new cuts agreed by the majority. We extract the shape’s contour and
segment it into meaningful parts simply by drawing straight lines
inside the contour.

Shape and subparts are classified and annotated before being pro-
vided to ShapeLearner. Taxonomy relations (isA, isPartOf ) are taken

from WordNet and textual sources [15, 33] and are used to create the
hierarchy.

In total, our dataset consists of 2,020 images in 50 shape families
in 7 broad classes (as shown in Table 1). Examples include humans,
vases, kangaroos, mammal skeletons, handbags, umbrellas, goblets,
and mushrooms. Based on these diverse seeds, our system can classify
a wide range of objects if they are somewhat similar to seed images.

Labeling Accuracy. To quantify ShapeLearner’s output quality, we
rely on a pixel-based metric to evaluate the part segmentation [17].
Given a segmented part, we measure its overlap with the ground-truth
part as the number of pixels that are correctly labeled in the overlap
vs. the incorrect ones. A part is considered adequately labeled if a
reasonable percentage (precision > 75%) of pixels are in the overlap.
The terminology is as follows.

• True Positive (TP): correct cut/pixel label
• True Negative (TN): correct removed cut/pixel label
• False Positive (FP): a cut/pixel label supposed to be removed but

not removed
• False Negative (FN): a cut/pixel supposed to be labeled, but re-

moved.

Given these, we can use the standard definition of precision as
TP

TP+FP
, recall as TP

TP+FN
, and F1 = 2TP

2TP+FP+FN
. The class

precision scores given in Table 1 and Table 2 refer to the precision of
inferring class labels for the shape.

Baselines. Given all part hypotheses, we evaluate our method (both
class constraints and label constraints) against two simpler baselines.
However, we experiment with baselines that omit the Part-inclusion
constraint and optionally the Part-distinctiveness constraint to high-
light the importance of our algorithm’s advanced inference:

• N: the inference includes Part-number constraints and class con-
straints, but not Part-distinctiveness and Part-inclusion constraints.

• N+D: the inference includes Part-number,
Part-distinctiveness constraints and class constraints, but
not Part-inclusion constraints.

Comparison. For an experimental comparison, we used 20 images
per family as seed data. The remaining ones in each of the 50 families
were manually segmented and used as ground-truth for our evaluation.
Table 1 provides an evaluation of the segmentation and classifica-
tion for these baselines with respect to precision, recall, and the F1

measure. Our method outperforms these baselines in almost all cases
(except for a few cases with lower recall). Figure 6 illustrates a sub-
set of this evaluation, providing F1 results of baselines and of our
method.

In Figure 8(a), we investigate the scalability of our method with
respect to the number of initial seeds for classes with size larger than
50. Note that precision, recall, and F1 of the segmentation increase as
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Figure 6: Representative results by our method and baseline solutions. The F1 measure is shown below each result.

the number of seeds gets larger. After 20 seeds, the results appear to
converge and the improvement becomes marginal. Thus, 20 seeds are
a reasonable threshold in our experiments. This shows that a small
number of seeds can suffice to represent a shape-space sufficiently
well and adding more seeds can be redundant.

Figures 8(b) and 8(c) graphically plot a comparison between the
baselines and ShapeLearner’s full inference mechanism according to
the values in Table 1. We see that even for a small number of seeds,
our method outperforms other baselines and has very good precision,
recall, and F1.

Our classification (Table 1, bottom part) also outperforms the base-
lines on average. For a few classes, we did not improve over the
baselines, since their contours were quite similar and lacked distinc-
tive parts. For example, the small horn of the deer is similar to the ear
of the horse. A cat’s tail may be recognized as a back leg in unique
situations when the tail hangs down and the cat’s hind legs are oc-
cluded. Similarly, skeleton classes can be quite challenging. They are
similar in appearance both with other kinds of skeletons and with the
respective full living animal. Ribs in the skeleton are similar to legs
in size and orientation. Nevertheless, the segmentation of skeletons
is often successful in part precisely due to their similarity with liv-
ing mammals, enabling ShapeLearner to transfer the corresponding
knowledge.

Our method can infer a semantically correct segmentation even for
classes that are not currently indexed in ShapeLearner. The experi-
mental results in Table 3 show that even without any human-labeled
seeds from the target class, ShapeLearner is able to exploit seeds of
classes from related categories to transfer segmentation and annota-
tion information. When the seeds from different classes are rather
similar with the test shape, the outcome can be even better than the
direct segmentation and annotation (see the tiger and bedroom lamp
examples in Table 3). Morphological differences between tortoises
and other reptiles are quite profound. Thus in this case, the transfer
segmentation is less successful.

Figure 7 provides examples of three entirely new classes (a lion,
ostrich, and alpaca) that were properly segmented and annotated by
ShapeLearner without any prior knowledge about these classes.

We also compared the running time of our method with all con-
straints (“Ours”) to the method without constraints (“N”). The results
show that including all constraints does not increase the complexity,
increasing the runtime by just 0.5 seconds on average.

Evaluation and Comparison. Although our paper has a different
target, we compare our method with segmentation algorithms for
hand-drawn sketches ([17], direct retrieval (DR), and [29]). One ma-
jor difference is that that work is aimed at analysing the brush strokes,
which may contain significant information on the shape’s interior,

(a) Lion (b) Ostrich (c) Alpaca
Figure 7: Semantic segmentation of three new shapes (without prior
indexing of these classes by ShapeLearner).

while ours considers only the contour. From their dataset, we select all
object classes with meaningful contours (omitting three classes con-
sisting of many thin lines rather than clear contours) and compare the
average segmentation and annotation precision (see Table 4). While
the algorithm of Huang et al. can resolve many ambiguities due to oc-
clusions based on the interior brush strokes, our method nevertheless
gives superior results on a majority of classes, demonstrating the ef-
fective power of ShapeLearner’s knowledge. For the airplane and vase
classes, our method was inferior due to the large variety (airplanes)
and non-distinctiveness of parts (vases). Unfortunately, we could not
perform a more in-depth comparison (e.g., w.r.t. occlusions and a
larger variety of classes) since their code is not publicly available.

6 Use Cases

Finally, we present a set of use cases utilizing ShapeLearner to solve
a set of challenging shape related problems.

6.1 ShapeExplorer

We have developed a system called ShapeExplorer, an interactive
software tool based on a detailed analysis of images in terms of object
shapes and parts. For instance, given an image of a donkey, the system
may draw on ShapeLearner and its previously acquired knowledge
about zebras and dogs to automatically locate and label the head, legs,
tail, and so on. Based on such semantic models, ShapeExplorer can
then generate morphing animations, synthesize new shape contours,
and support object part-based queries (see Figure 9), as well as clipart-
based image retrieval. Details were published in Ge et al. [12]. Please
also refer to the URL https://youtu.be/JTQcQkBhvyk for
an online video of this system.

6.2 Keyword Queries

Our system enables novel forms of image queries referring to specific
parts of objects, e.g. for “pans with long handles”.
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Table 1: Experimental results for segmentation and annotation (top) and classification (bottom).

System Mammals Home Appliances Misc. Artifacts Foods Reptiles Fowl Skeletons All Avg.

N 68.3% 86.0% 88.5% 100.0% 74.5% 65.8% 57.3% 77.2% Prec.
N+D 69.2% 90.4% 92.3% 100.0% 74.5% 66.6% 59.8% 79.0%
Ours 79.4% 92.5% 92.6% 100.0% 84.1% 75.6% 71.8% 85.1%

N 85.5% 93.3% 93.7% 100.0% 85.4% 90.4% 76.4% 89.2% R
ecall

N+D 85.1% 92.4% 94.0% 100.0% 85.4% 90.3% 77.1% 89.2%
Ours 86.9% 93.6% 94.4% 100.0% 83.0% 91.4% 80.8% 90.0%

N 74.8% 88.1% 90.2% 100.0% 78.9% 74.3% 64.5% 81.6% F1N+D 75.3% 90.9% 93.0% 100.0% 78.9% 74.9% 66.4% 82.8%
Ours 82.2% 92.5% 93.3% 100.0% 82.9% 81.1% 74.6% 86.7%

N 65.3% 91.4% 87.8% 93.3% 92.5% 87.8% 61.9% 82.9% C
lassN+D 72.0% 93.2% 92.6% 93.3% 95.0% 88.9% 58.8% 84.8%

Ours 71.9% 93.7% 92.6% 93.3% 95.0% 89.3% 59.3% 85.0%

Table 2: Excerpts for segmentation and annotation (top) and classification (bottom).

System Mammals Home Appliances Misc. Artifacts Foods Reptiles Fowl Skeletons

Elephant Cow Deer Horse Cat Vase Hairdryer Broom Rifle Axe Mushroom Tortoise Crocodile Duck Bird Mammals Dinosaur

N 74.6% 62.4% 80.6% 64.5% 63.3% 67.8% 96.7% 96.7% 59.1% 93.3% 100.0% 65.6% 68.8% 63.2% 67.4% 62.2% 52.5% Prec.

N+D 75.8% 63.2% 81.7% 64.6% 65.5% 73.3% 96.7% 96.7% 78.2% 93.3% 100.0% 65.6% 68.8% 63.8% 69.2% 64.3% 55.3%
Ours 86.0% 71.4% 87.0% 77.9% 79.6% 73.3% 96.7% 96.7% 79.9% 93.3% 100.0% 78.2% 81.4% 74.4% 79.2% 75.1% 68.4%

N 90.5% 81.3% 87.7% 83.9% 80.3% 80.0% 96.7% 96.7% 85.3% 93.3% 100.0% 80.9% 84.8% 89.5% 90.6% 78.4% 74.5% R
ecallN+D 88.9% 79.6% 87.7% 83.1% 80.6% 78.3% 96.7% 96.7% 86.8% 93.3% 100.0% 80.9% 84.8% 87.5% 92.2% 78.4% 75.9%

Ours 91.1% 84.2% 90.0% 86.2% 84.8% 78.3% 96.7% 96.7% 88.5% 93.3% 100.0% 81.1% 89.9% 86.7% 93.1% 82.8% 78.8%
N 81.2% 69.7% 83.0% 72.0% 70.1% 72.1% 96.7% 96.7% 67.8% 93.3% 100.0% 71.4% 75.4% 72.6% 75.6% 68.3% 60.6% F1

N+D 81.3% 69.5% 83.7% 71.8% 71.5% 75.0% 96.7% 96.7% 81.6% 93.3% 100.0% 71.4% 75.4% 72.4% 77.5% 69.6% 63.1%
Ours 88.0% 76.5% 87.8% 81.2% 81.4% 75.0% 96.7% 96.7% 83.3% 93.3% 100.0% 79.2% 84.9% 78.6% 84.1% 77.9% 71.4%

N 94.4% 53.1% 90.4% 37.8% 86.0% 90.0% 96.7% 76.7% 69.0% 70.0% 93.3% 96.6% 90.0% 83.5% 83.3% 34.0% 89.9% C
lassN+D 94.4% 60.5% 80.9% 76.7% 76.0% 86.7% 100.0% 76.7% 93.1% 70.0% 93.3% 96.6% 100.0% 89.9% 76.7% 37.7% 79.8%

Ours 94.4% 59.3% 80.9% 75.6% 76.0% 86.7% 100.0% 76.7% 93.1% 70.0% 93.3% 96.6% 100.0% 91.1% 76.7% 38.9% 79.8%

Table 3: Experimental results for with seeds (top) and with only transfer (bottom).

Method Feline Reptiles Lamp Canine

Cat Leopard Tiger Tortoise Crocodile Lizard Gecko Desk Lamp Floor Lamp Bedroom Lamp Dog Wolf Fox

Precision 79.6% 73.7% 75.1% 78.2% 81.4% 88.2% 88.7% 92.6% 94.6% 85.0% 79.8% 71.5% 77.3%

D
irectRecall 84.8% 91.1% 78.1% 81.1% 89.9% 78.5% 82.4% 90.7% 96.4% 85.6% 92% 84.6% 84.9%

F1 81.4% 80.3% 76.2% 79.2% 84.9% 82.6% 84.9% 91.4% 95.2% 83.2% 84.5% 76.1% 80.2%
Precision 66.7% 70.1% 86.7% 46.2% 71.3% 78.4% 81.2% 88.9% 92.9% 91.7% 78.0% 69.8% 74.3%

Recall 60.0% 72.6% 70.2% 52.9% 69.5% 71.9% 77.5% 87.0% 100.0% 78.9% 69.2% 77.1% 66.1%

Trans.F1 62.0% 69.6% 76.7% 48.6% 69.8% 74.8% 78.3% 87.7% 95.2% 82.1% 71.6% 71.2% 68.6%

(a) Scalability. (b) Comparison between baselines. (c) Classification results.

Figure 8: Experimental results graphs. In (a) we show the scalability of the average precision, recall and F1, and in (b) the comparison with
other baselines. In (c) we show classification precision comparison with other baselines.
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(a) (Partial) Shape Query. (b) Morphing. (c) Shape Synthesis and Completion.
Figure 9: ShapeLearner use cases, demonstrating partial shape querying of an elephant head and trunk (a), part-based morphing between a
horse and an elephant (b) and synthesis of a new creature (c).

Table 4: Comparison with Huang et al. (2014), DR, and Shen et
al. (2012) in precision.

Class DR Shen Huang Ours

airplane 40.2% 56.1% 66.2% 65.8%

candelabra 39.8% 56.1% 56.7% 68.5%
rifle 49.6% 48.5% 62.2% 67.2%
fourleg 52.3% 50.0% 67.2% 80.9%

vase 51.7% 54.1% 63.1% 51.0%

human 49.2% 47.7% 64.0% 94.1%

lamp 67.8% 76.9% 89.3% 94.9%

Nouns are matched with object and part names in the database,
while adjectives are matched with attributes as described below. Stop
words and other unmatched words are ignored.

Attributes that can be matched include colors, angles, size, and
length. All the objects are normalized according to their bounding
boxes. Given the segmented parts of an object, the key line of a part
is defined as the line connecting the middle point of the cut and the
midpoint of its contour. The angle of a part is defined as the angular
offset from a vertical line, i.e., the angle between the key line and a
vertical line. The length of a component is defined as the length of the
skeleton of its shape. To obtain the skeleton, we relied on an existing
method [30]. Table 5 provides 7 example queries. The corresponding
query results are shown in Figure 10.

Table 5: Example keyword queries.

Query

Q1 horse with head down
Q2 horse with long tail
Q3 long tail of horse
Q4 cup with small handle
Q5 small cup handle
Q6 cup with black handle
Q7 pot with handle on the top

We observe that if the segmentation is correct, we obtain meaning-
ful results, e.g. for Q1 and Q6. The quality of the cut of a part affects
the results. In Q2 and Q3, the tail of the fifth horse is shortened due
to inaccuracies in the cut of the tail. In Q4 and Q5, the system has
located a handle at the top of the first cup, rather than on the right
side.

7 Conclusion

We have introduced ShapeLearner, a novel system for organizing
2D shapes and their parts in a hierarchical structure that learns to

Figure 10: Keyword query results.

process new images and even new categories of objects. Our system
starts with annotated seed data but then augments its knowledge
by automatically processing new images and shapes. We derive a
set of statistical constraints that we apply to correctly classify and
segment an unknown input shape. ShapeLearner is able to transfer
hypotheses based on visual similarity and relies on integer linear
programming for joint inference. Our experiments show that, after
seeding, ShapeLearner is able to collect valuable knowledge about
shapes from uncategorized images. We additionally present several
applications as use-cases of ShapeLearner, showcasing enhanced
shape processing and manipulation.

In future work, we would like to extend ShapeLearner to focus
not only on 2D shapes represented by their contours, but also to
analyse the interior textures, for which we are exploring the use of
deep convolutional neural networks. While a reduction to 2D shape
contours reduces some of the noise, it results in a minimalist geometric
representation. By going beyond it, ShapeLearner could thus also be
extended to handle object shapes with severe shape occlusions.

We also plan to extend ShapeLearner to cover a wider range of
semantic relationships and integrate it more tightly with the growing
ecosystem of large-scale resources centered around the WordNet
taxonomy, including ImageNet [9], YAGO [15], and UWN [8].

Finally, we are in the process of extending the seed data to cover
many new categories, including medical data on bones and organs.
We are also investigating crowdsourcing techniques to harvest a very
broad range of categories. Initial experiments indicate that novices
can fairly quickly learn how to mark parts of an object’s shape. Thus,
crowdsourcing techniques could enable us to quickly grow Shape-
Learner’s knowledge to cover thousands of categories of objects.
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