Temporal Event Reasoning using Multi-Source Auxiliary Learning Objectives

Xin Dong¹, Tanay Kumar Saha², Ke Zhang², Joel Tetreault²,

UTGERS

Alejandro Jaimes², and Gerard de Melo³

Putgers University ²Dataming Inc.

¹Rutgers University ²Dataminr Inc ³Hasso Plattner Institute / University of Potsdam contact:
xd48@rutgeres.edu
gdm@demelo.org
www.demelo.org

Motivation

Temporal event reasoning is vital in modern information-driven applications operating on news articles, social media, financial reports, etc.

Question Answering samples from TORQUE

OF NEW JERSEY

Passage: They were traveling in an up-armored high-mobility, multi-purpose, wheeled vehicle when this occurred. Those injured were evacuated by air to a nearby forward operating base for treatment.

Questions	Answers
What events have already finished?	traveling, occurred, evacuated
What will happen in the future?	No answer.
What events happened during their travel?	occurred, evacuated
What events have begun but has not finished?	treatment
What happened after it occurred?	evacuated, treatment
What happened before the injured were treated?	traveling, occurred, evacuated

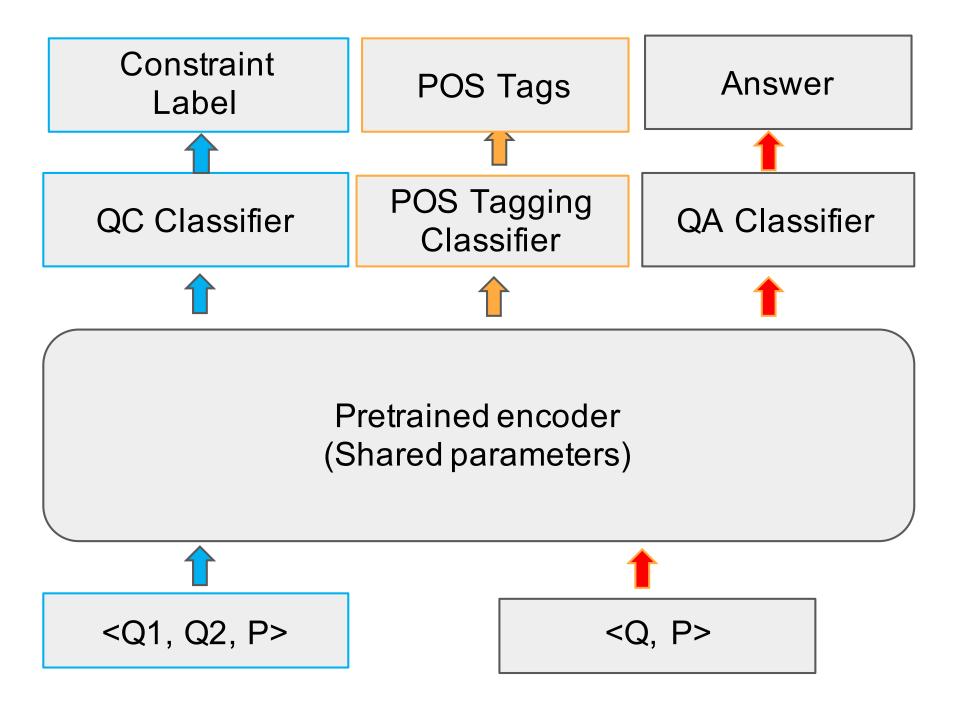
Temporal information inferring from POS Tag

Example	POS Tag	Temporal Information		
People have predicted his demise so many times	VBN: verb, past participle	event has happened		
Security Council passed a resolution	VBD: verb, past tense	event happened		

Method

Injects additional temporal knowledge into the pretrained model from two sources:

- (i) part-of-speech tagging
- (ii) question constraints.
- e.g., the set of answers to "What events have already finished?" and "What will happen in the future?" should typically be disjoint.



Results and Analysis

Experimental Settings

TORQUE: a reading com- prehension dataset of temporal ordering questions and answers. It provides 3.2k passages (~50 tokens/passage), 24.9k events (7.9 events/passage), and 21.2k user-provided questions. For end-to-end training, the task is modeled as a binary classification problem that requires predicting for each token in the passage whether it is an answer.

MATRES: a temporal relation (TempRel) extraction benchmark, consisting of 275 documents with entity relationships labeled as Before, After, Equal, or Vague.

Metrics: TORQUE is evaluated in terms of F1 score, Exact Match (EM), and Consistency (C). The latter is defined as the percentage of contrast groups for which a model's predictions have $F1 \le 80\%$ for all questions in a group. The contrast groups provided by TORQUE consist of questions with contrasting changes to the temporal keywords, e.g., "What happened after the snow started?" versus "What happened before the snow started?". For MATRES, we report standard micro-averaged F1 scores.

TORQUE (Question Answering Setup)

Method	F 1	\mathbf{EM}	\mathbf{C}
RoBERTa-Large [11]	75.2	51.1	34.5
RoBERTa-Large			
+ Question CC	75.7	51.3 50.7	<u>36.2</u>
+ POS Tagging	<u>75.8</u>	50.7	35.6
+ POS Tagging $+$ Question CC	76.0	<u>51.2</u>	36.7

Results on TORQUE Dataset.

MATRES (Relation Extraction Setup)

Method	F 1
Want et al. [16]	78.8
RoBERTa-Large	80.1
+ TORQUE	80.6
+ TORQUE (Question CC)	80.4
+ TORQUE (POS Tagging)	80.7
+ TORQUE (POS Tagging + Question CC)	81.1

Results on MATRES Dataset.

Influence of Amount of Training Data for TORQUE.

Ratio	30%		50%			100%			
Method	F1	\mathbf{EM}	\mathbf{C}	F1	\mathbf{EM}	\mathbf{C}	F 1	\mathbf{EM}	\mathbf{C}
RoBERTa-Large	57.3	37.9	20.1	73.3	46.3	32.0	75.2	51.1	34.5
Our Approach	68.5	39.4	25.1	74.3	48.5	34.5	76.0	51.2	36.7
Improvement (%)	19.5%	4.0%	24.8%	1.4%	4.8%	7.8%	1.1%	0.2%	6.4%

Results on TORQUE with different ratios of training data.