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Temporal event reasoning is a crucial yet under-explored aspect of interpreting
text in modern information systems, enabling people to infer the timeline of nar-
rated events. Past work has often cast this as a Relation Extraction task [2,12,13]
that involves predicting temporal relationships between two events mentioned
in a given piece of text, such as BEFORE or AFTER. Another recently proposed
task is that of reading comprehension about temporal relations [11]. Given an
input text, the system answers temporal questions pertaining to some event.
Compared with the aforementioned temporal relationship prediction task, the
advantage of such a Question Answering (QA) problem formulation is that ques-
tions can encode a richer, more diverse range of complex temporal relationships
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and phenomena, such as overlap, uncertainty, negation, hypotheticals, and rep-
etition, to name a few. For instance, we may ask a challenging question incorpo-
rating negation such as “What has not happened after investigators made good
progress?”

Table 1. Excerpts from input passages with different verb POS tags.

Example POS tag Temporal information

People have predicted VBN: verb, past participle | event has happened
his demise so many
times...

Security Council passed a | VBD: verb, past tense event happened
resolution ...

Table 2. Question Answering samples from TORQUE [11].

Passage: They were traveling in an up-armored high-mobility, multi-purpose, wheeled vehicle when

this occurred. Those injured were evacuated by air to a nearby forward operating base for treatment.
Questions Answers

What events have already finished? traveling, occurred, evacuated

‘What will happen in the future? No answer.

‘What events happened during their travel? occurred, evacuated

What events have begun but has not finished? treatment

What happened after it occurred? evacuated, treatment

‘What happened before the injured were treated? | traveling, occurred, evacuated

Auxiliary learning is a common means of improving the performance on a
primary task of interest [6,8,15]. In our work, we propose two auxiliary tasks
to acquire better temporal reasoning abilities: (i) part-of-speech (POS) tagging,
and (7) question constraints. POS tagging as an auxiliary task is able to ensure a
better understanding of tense-related information within a sentence. For exam-
ple, as shown in Table1, the word “predicted” in “People have predicted his
demise so many times ...” is labeled as VBN (past participle), while “passed”
is labeled as VBD (past tense) in “Security Council passed a resolution ...”.
Being able to capture such distinctions enables the model to more accurately
distinguish what happened from what has (perhaps more recently) happened.

The second auxiliary task, question constraints, can be viewed as a self-
supervised task and is induced based on a temporal question answering dataset.
As shown in Table2, for a given text passage, the dataset provides a set of
questions, and different questions tend to call for different answers. For example,
the set of answers to “What events have already finished?” and “What will
happen in the future?” should typically be disjoint. Hence, we explore the value
of question constraint rules between pairs of questions for a passage. We induce
such rules automatically based on their answer overlap, and subsequently enforce
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them by training the model with the auxiliary classification task of identifying
the kind of answer overlap.

We propose a novel multi-source auxiliary learning objective that incorpo-
rates the two auxiliary tasks to improve the performance in two temporal event
reasoning tasks. Our method achieves a new state-of-the-art performance on the
TORQUE [11] dataset (QA setup), improving over previous work by 0.8 F1
points (absolute). Having fine-tuned the model on this QA setup so as to learn
complex temporal cues, we further demonstrate the generalizability of our app-
roach by showing that the fine-tuned encoder can then be further fine-tuned to
improve the top performance on MATRES [12] (Relation Extraction setup) by
2.3 F1 points. Finally, we show that our approach is particularly performant in
a low-resource setting, yielding absolute improvements of up to 19.5%.

2 Related Work

Temporal Question Answering. Great strides have been made with
new architectures and new self-supervised objectives to improve over vanilla
BERT [3]. However, while models such as RoBERTa [10] and AIBERT [7] enable
a better understanding of predicates and arguments for conventional QA tasks,
our experiments show that they fail to yield substantial gains on temporal QA.
Recently, Han et al. [5] presented a temporal-related language model with new
self-supervised objectives for improved Temporal QA. In contrast to our app-
roach, this method requires pre-defined event and temporal lexicons.

Temporal Relation Extraction. Compared with temporal QA, temporal rela-
tion (TempRel) extraction is widely studied in temporal event reasoning. Many
TempRel datasets have been collected, such as TB-Dense [2], RED [13], and
MATRES [12], and a variety of models target this task. For instance, Han
et al. (2019) [4] present a joint event and temporal relation extraction model.
Wang et al. (2020) [16] enforce logical constraints within and across temporal
relations via differentiable learning objectives. Zhou et al. (2020) [18] incorporate
probabilistic soft logic regularization and global inference.

Auxiliary Learning. There is a long history of research on multi-task learn-
ing [14], e.g., the Multi-Task Deep Neural Network (MT-DNN) seeks to learn
representations across diverse natural language understanding tasks [9]. In aux-
iliary learning, there is a single primary task, and the role of the auxiliary tasks
is to improve the performance and generalizability of this primary task. Trinh
et al. (2018) [15] propose a method for better capturing long term dependencies
in RNNs with an extra unsupervised auxiliary loss. Xu et al. (2021) [17] propose
multi-task recurrent modular networks for any multi-task recurrent models.

3 Method

Following standard practice when training a deep network on multiple tasks [9],
our model consists of a shared encoder and several task-specific classifiers on top
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of it. There is one such classifier for the primary task as well as two further ones
for our proposed auxiliary tasks. This architecture allows the shared encoder to
jointly learn from each of the tasks.

Shared Encoder. The encoder is from a pre-trained contextual representation
model, denoted as fs(-;6se). Given an input text sequence s consisting of T
tokens [x1, X2, ..., X7], this encoder infers a contextual hidden representation hy €
R? d of dimensionality d for each input token x;.

Primary Task. Our primary task-specific classification module f,(+;6,) is
responsible for the question answering task. It is applied for fine-tuning on top
of the pre-trained model fs(-;0se) and consists of a fully-connected layer with
softmax activation to map hy € R% into RP»l. Here, YVp is defined as a set of
binary output class labels denoting whether a given token is deemed a valid
answer in response to the question.

Auxiliary Tasks. The model is additionally trained on two auxiliary tasks.

1. POS tagging. Our auxiliary POS tagging classification module fpos(+;8pos)
draws its input from the shared encoder fs(;0s). It then applies a linear
mapping hy € R% into RIYres| followed by a softmax activation to predict a
distribution over the set of POS tag classes Vpos-

2. Question Constraint Classification (Question CC). For a given passage p from
our primary QA task, we have a corresponding question set Q = {(¢;,a;) | i €
{1,...,n},a; # 0}, where n is the number of questions and a; is the answer
set for question ¢;. From this, we can obtain a set of question pairs C =
{{gi,qj) | i < j;i,j € {1,...,n}} and a set of answer pairs A = {{a;,a;) | i <
Jii,j € {1,...,n}}. We consider the overlap of answers between two questions
to acquire a constraint label for the question pair. In particular, the constraint
label is chosen from a set of five relations J,. = { EQUAL, SUBSET, SUPERSET,
Di1sJOINT, OVERLAP}, based on the corresponding conditions (a; = a;), (a; C
a;), (a; D aj), (a;iNaj =0), and (a; Naj # 0;a;, Na; # ai;a; Na; # aj). To
predict such labels, our model incorporates a question classification module
fac(+;04c) consisting of a fully-connected layer mapping hg € R? into RVael
with softmax activation.

Auxiliary Learning Objectives. To inject the temporal knowledge into the
primary QA training, we jointly learn the primary task along with the two
auxiliary tasks. Hence, the overall loss function becomes

L= Ep + >\1£pos + )\2£qCa (1)

where Ly, Lpos, Lgc are the QA loss, POS tagging loss, and question constraint
classification loss, respectively, and A1, A2 are coefficients to control the influence
of each auxiliary task loss term.
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4 Experiments

4.1 Experimental Setup

Tasks and Datasets. For evaluation, we use TORQUE [11], a reading compre-
hension dataset of temporal ordering questions and answers. It provides 3.2k pas-
sages (~50 tokens/passage), 24.9k events (7.9 events/passage), and 21.2k user-
provided questions. For end-to-end training, the task is modeled as a binary clas-
sification problem that requires predicting for each token in the passage whether
it is an answer. We also investigate pretraining on TORQUE to then improve
on MATRES [12], a temporal relation (TempRel) extraction benchmark, con-
sisting of 275 documents with entity relationships labeled as BEFORE, AFTER,
EQuaAL, or VAGUE. Regarding metrics, TORQUE is evaluated in terms of F1
score, Exact Match (EM), and Consistency (C). The latter is defined as the per-
centage of contrast groups for which a model’s predictions have F1 < 80% for all
questions in a group. The contrast groups provided by TORQUE consist of ques-
tions with contrasting changes to the temporal keywords, e.g., “What happened
after the snow started?” versus “What happened before the snow started?”. For
MATRES, we report standard micro-averaged F1 scores.

Table 3. Hyper-parameter settings.

Parameter TORQUE | MATRES
Max. sequence length 180 220
Batch size 12 10
Learning rate 1x1075% |[5x10°¢
# of training epochs 10 5

A1 0.001 -

A2 0.001 —

Model Details. For POS tagging as the auxiliary task, we invoke NLTK [1]
to obtain POS tags on the TORQUE training set. The size of the POS tag
inventory is 36. For question constraint classification, the number of question
pairs extracted from the training set for the five labels defined in Sect. 3 are 4,307,
11,610, 6,181, 42,928, and 7,146, respectively. We adopt RoBERTa-Large [10]
as the pre-trained encoder. To further evaluate the effectiveness of auxiliary
learning, we use models fine-tuned on TORQUE first to evaluate on MATRES.
We tune the hyper-parameters based on the respective development sets and
list their values in Table 3. On TORQUE, as for the original baseline, we report
average results over 3 random seeds, while on MATRES, we consider averages
over 5 runs.
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4.2 Results and Analysis

Table 4. Results from TORQUE experiments.

Method F1 |EM |C
RoBERTa-Large [11] 75.2 |51.1 | 34.5
RoBERTa-Large

+ Question CC 75.7 |51.3]36.2
+ POS Tagging 75.8 | 50.7 |35.6
+ POS Tagging + Question CC 76.0|51.2 | 36.7

TORQUE (Question Answering Setup). The current SOTA method on
TORQUE is RoBERTa-Large [11]. Table4 compares our approach against this
baseline to evaluate the effectiveness of auxiliary learning. We first evaluate
on RoBERTa-Large with either POS tagging or Question CC as the auxiliary
task. Compared with RoBERTa-Large, we observe that adding Question CC
improves the Consistency score, while POS tagging in particular improves the F1
score. This shows that our answer constraints lead to a better understanding of
the differences between questions, while the POS tagging auxiliary task enables
the model to better capture subtle differences. Our full method outperforms
RoBERTa-Large across all three metrics, demonstrating that our multi-source
auxiliary learning objective is effective for our primary QA task.

Table 5. Results on TORQUE with different ratios of training data.

Ratio 30% 50% 100%

Method F1 EM |C F1 EM |[C F1 |EM |[C
RoBERTa-Large 57.3 [37.9 |20.1 73.3 146.3 | 32.0 |75.2 |51.1 |34.5
Our approach 68.5 39.4 |25.1 |74.3 |48.5 |34.5 |76.0 51.2 |36.7
Improvement (%) |19.5% | 4.0% |24.8% | 1.4% 4.8% | 7.8% | 1.1% | 0.2% | 6.4%

Influence of Amount of Training Data for TORQUE. To assess the effec-
tiveness of our method with limited amounts of training data on TORQUE, we
compare our full multi-source auxiliary learning approach with RoBERTa-Large
using different ratios of training data. As shown in Table5, our method yields
significant improvements over RoBERTa-Large in terms of F1 and C scores,
especially with 30% of training data, which suggests that our auxiliary tasks are
particularly fruitful when training data is scarce, although this also means that
less supervision is available for POS tagging and question constraint induction
Table 6.
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Table 6. Results on MATRES dataset.

Method F1

Want et al. [16] 78.8
RoBERTa-Large 80.1
+ TORQUE 80.6
+ TORQUE (Question CC) 80.4
+ TORQUE (POS Tagging ) 80.7
+ TORQUE (POS Tagging + Question CC) |81.1

MATRES (Relation Extraction Setup). As TORQUE provides more com-
plex temporal information, we assess to what extent we can transfer the knowl-
edge learned on it to the MATRES relation extraction task, so as to evaluate the
generalizability of our auxiliary learning. As baselines, in addition to RoOBERTa-
Large, we consider Wang et al. [16], which incorporates temporal logic con-
straints among events into the training loss function. Our model is fine-tuned
on TORQUE first and then further fine-tuned on MATRES. This outperforms
the baselines, showing that MATRES can benefit from the auxiliary information
provided by training on TORQUE first. In this regard, compared to versions
with just one additional auxiliary task, our full auxiliary learning model proves
the most effective at acquiring an understanding of temporal relationships.

5 Conclusion

We propose a method to inject additional temporal information with multi-
source auxiliary learning objectives into pre-trained models for temporal event
reasoning. In particular, we consider part-of-speech prediction and question
answer constraint classification as additional objectives, and investigate how
pretraining on question answering can benefit temporal relation extraction. Our
experiments show that we achieve state-of-the-art results on TORQUE as well
as on MATRES, and that our auxiliary learning method is particularly useful in
low-resource settings.
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